NCCEHWebinar • July 28, 2022

Daily and hourly exposure to PM₂₅ and wildfire smoke and cognitive performance in a brain-training game: Alongitudinal study of US adults

Stephanie Cleland

PhD Candidate

ORISE Research Participant

GLOBAL PUBLIC HEALTH DEPARTMENT OF ENVIRONMENTAL SCIENCES AND ENGINEERING

ACKNOWLEDGEMENTS

LSEPA

- Ana Rappold
- Lauren Wyatt

UNC-CHAPEL HILL

- Jason West
- Marc Serre

FINDING SOLRCES

 ORISE Research Participation Program

The views expressed in this presentation do not necessarily reflect the views or policies of the US EPA. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

AGENDA

1

Background & Objective

- 2 Methods
- 3 Results

4 Conclusions

BACKGROUND & OBJECTIVE

Fine Particulate Matter (PM_{25})

- PM_{2.5} = particulate matter less than 2.5 microns in diameter
- Emitted from cars, power plants, fires, etc. and formed from chemical reactions
- Exposure is ubiquitous and continuous
- Inhaled into the deepest parts of the lungs, causing adverse health outcomes

Wldfire Smoke

- Complex mixture of PM and toxic chemicals and gases
 → PM_{2.5} primary concern
- Wildfire PM_{2.5} has different composition from typical ambient PM_{2.5}
- Exposure may lead to different health effects compared with typical air pollution
- Exposure likely to increase with climate change

Air Pollution & Cognitive Function

- PM_{2.5} can reduce academic performance in children and accelerate cognitive decline in the elderly
- Agricultural fires and indoor fire usage can reduce performance on neurocognitive tests
- Most epidemiologic evidence is for longterm exposure (1 or more years)

Knowledge Gaps

Limited evidence of $PM_{2.5}$ associations at the daily and hourly level

No evidence of associations with wildfire smoke exposure

Limited evidence of associations in the working age population

Objective

Evaluate the associations between daily and sub-daily exposure to $PM_{2.5}$ and wildfire smoke and cognitive performance in adults in the contiguous United States (US)

METHODS

Approach Overview

Daily and Sub-Daily PM₂₅ & Smoke Exposure

Longitudinal study design with

linear mixed effects models

Cognitive Performance in Adults

Cognitive Performance Data

- Lumosity brain-training platform
- Data for 10,228 contiguous US users (≥18) in a game designed to measure attention
- 20 timestamped scores per user for 2017-2018
- Information on user age, sex, education level, device used, and ZIP3 location

Cognitive Performance Data

- Lumosity brain-training platform
- Data for 10,228 contiguous US users (≥18) in a game designed to measure attention
- 20 timestamped scores per user for 2017-2018
- Information on user age, sex, education level, device used, and ZIP3 location

PM₂₅ Data

- Bayesian Maximum Entropy (BME) Data Fusion of observations from US EPA FRM/FEM and PurpleAir monitors
- Population-weighted daily and hourly average BME estimates to ZIP3 level

PurpleAir Observations

Wildfire Smoke Data

- Smoke plumes from NOAA's Hazard Mapping System
 - \rightarrow Plumes classified into 3 densities: light, medium, heavy
- Limited data to western US (CA, OR, NV, ID, MT)
- Calculated maximum daily smoke density observed in a ZIP3

Longitudinal repeated measures design with linear mixed effects models

 $\begin{aligned} Score_{n,i,s,t} &= \beta_0 + u_{0,i} + \beta_1 \log(n) + \beta_2 Score_{i,n-1} + \beta_3 Score_{i,n-2} + \beta_4 Score_{i,n-3} + \\ \beta_5 Exposure_{s,t} + covariate_{n,i,s,t} + \varepsilon_{n,i,s,t} \end{aligned}$

$\begin{aligned} Score_{n,i,s,t} &= \beta_0 + u_{0,i} + \beta_1 \log(n) + \beta_2 Score_{i,n-1} + \beta_3 Score_{i,n-2} + \beta_4 Score_{i,n-3} + \\ & \beta_5 Exposure_{s,t} + covariate_{n,i,s,t} + \varepsilon_{n,i,s,t} \end{aligned}$

Score on play *n* for user *i* in ZIP3 *s* on day/hour *t*

 $\begin{aligned} & \text{Learning over 20 plays} \\ & \text{Score}_{n,i,s,t} = & \beta_0 + u_{0,i} + \beta_1 \log(n) + \beta_2 \text{Score}_{i,n-1} + \beta_3 \text{Score}_{i,n-2} + \beta_4 \text{Score}_{i,n-3} + \\ & \beta_5 \text{Exposure}_{s,t} + \text{covariate}_{n,i,s,t} + & \varepsilon_{n,i,s,t} \end{aligned}$

$$\begin{aligned} Score_{n,i,s,t} &= \beta_0 + u_{0,i} + \beta_1 \log(n) + \beta_2 Score_{i,n-1} + \beta_3 Score_{i,n-2} + \beta_4 Score_{i,n-3} + \\ \beta_5 Exposure_{s,t} + covariate_{n,i,s,t} + \varepsilon_{n,i,s,t} \end{aligned}$$

PM_{2.5}

 $\begin{array}{l} \underline{\text{Daily:}} \ 7 \ \text{lags of daily} \\ \text{average } \text{PM}_{2.5} \\ \underline{\text{Hourly:}} \ \text{Max hourly} \\ \text{PM}_{2.5} \ \text{in } 3, 6, \ \text{and } 12 \\ \text{hours prior to play} \end{array}$

Wildfire Smoke

Daily: Max smoke density at lags 0 and 1 <u>Weekly:</u> Max smoke density in 1 week prior to play

$$\begin{aligned} Score_{n,i,s,t} &= \beta_0 + u_{0,i} + \beta_1 \log(n) + \beta_2 Score_{i,n-1} + \beta_3 Score_{i,n-2} + \beta_4 Score_{i,n-3} + \\ \beta_5 Exposure_{s,t} + covariate_{n,i,s,t} + \varepsilon_{n,i,s,t} \end{aligned}$$

Covariates		
Time of day	Age group	
Day of week	Gender	
Month	Education	
Days since last play	Device	
Relative humidity	% poverty	
Temperature	% HS graduation	
Annual PM _{2.5}	RUCC level	

User & ZIP3-level characteristics Meteorologic & temporal variables

Primary Results

PM_25

Change in attention score associated with a 10 μ g/m³ increase in daily or sub-daily PM_{2.5}

- → For both contiguous and western US users
- → Overall and by age, sex, and habitual behavior

Wildfire Smoke

Change in attention score associated with light, medium, or heavy density smoke at the daily or weekly level, relative to no smoke

- \rightarrow For western US users only
- → Overall and by age, sex, and habitual behavior

Primary Results

PM_25

Change in attention score associated with a 10 μ g/m³ increase in daily or sub-daily PM_{2.5}

- → For both contiguous and western US users
- → Overall and by age, sex, and habitual behavior

Wildfire Smoke

Change in attention score associated with light, medium, or heavy density smoke at the daily or weekly level, relative to no smoke

- \rightarrow For western US users only
- → Overall and by age, sex, and habitual behavior

Results – PM₅

- Significant negative associations for both sub-daily and daily exposures
- Associations more pronounced in western US

Results – PM_{25}

- Significant negative associations for both sub-daily and daily exposures
- Associations more pronounced in western US

Results – PM₅

Exposure over 20 plays associated with:

- 3.7% reduction in final score (529 points, ~11 fewer correct answers) in contiguous US
- 6.2% reduction (882 points, ~18 fewer correct answers) in western US

Results – PM₂₅

Youngest (18-29) and oldest (70+) users had strongest associations

Results – PM₂₅

No observed differences by gender

Results – PM₂₅

Associations more pronounced in habitual users

Results – Wildfire Smoke

Significant negative associations for:

- Medium smoke density at Lag 0
- Heavy smoke density at Lag 1 and 1-week max

Results – Wildfire Smoke

Significant negative associations for:

- Medium smoke density at Lag 0
- Heavy smoke density at Lag 1 and 1-week max

Results - Wildfire Smoke

Users aged 18-29 and 40-49 had strongest associations

Results - Wildfire Smoke

Males had more pronounced associations than females

Results - Wildfire Smoke

Associations more pronounced in habitual users

CONCLEGIONE

Significant associations between short-term exposure to $\rm PM_{2.5}$ and wildfire smoke and decreased attention in adults

Significant associations between short-term exposure to $\rm PM_{2.5}$ and wildfire smoke and decreased attention in adults

Strongest associations with $\mbox{PM}_{\rm 2.5}$ and wildfire smoke observed within a short exposure window

 \rightarrow PM_{2.5} within 3 hours of exposure, wildfire smoke within 1-2 days

Significant associations between short-term exposure to $\rm PM_{2.5}$ and wildfire smoke and decreased attention in adults

Strongest associations with $\mbox{PM}_{\rm 2.5}$ and wildfire smoke observed within a short exposure window

 $PM_{2.5}$ associations more pronounced in the wildfire-impacted western US \rightarrow Possibly due to different $PM_{2.5}$ composition or other wildfire impacts

Significant associations between short-term exposure to $\rm PM_{2.5}$ and wildfire smoke and decreased attention in adults

Strongest associations with $\mbox{PM}_{\rm 2.5}$ and wildfire smoke observed within a short exposure window

 $\mathrm{PM}_{\mathrm{2.5}}$ associations more pronounced in the wildfire-impacted western US

Younger (18-29), older (70+), male, and habitual users most affected \rightarrow Highlights importance of user behavior in associations

Strengths & Limitations

Strengths

- First study to look at cognitive effects of daily and <u>hourly</u> PM_{2.5} and smoke exposure in a large adult population
- Repeat measures for 10,000+ diverse users
- BME data fusion to estimate PM_{2.5}
- Results largely consistent with existing research

Limitations

- Lumosity is not a clinical measure of cognitive performance
- Possibility of exposure misclassification
- Differences between subgroups were not statistically significant
- Generalizability may be limited to populations like Lumosity cohort

Strengths & Limitations

Strengths

- First study to look at cognitive effects of daily and hourly PM_{2.5} and smoke exposure in a large adult population
- Repeat measures for 10,000+ diverse users
- BME data fusion to estimate PM_{2.5}
- Results largely consistent with existing research

Limitations

- Lumosity is not a clinical measure of cognitive performance
- Possibility of exposure misclassification
- Differences between subgroups were not statistically significant
- Generalizability may be limited to populations like Lumosity cohort

- Explore cognitive domains other than attention
 - \rightarrow Lumosity may be a useful tool for this

- Explore cognitive domains other than attention
 - \rightarrow Lumosity may be a useful tool for this
- Investigate the interaction between wildfire smoke and PM_{2.5}

- Explore cognitive domains other than attention
 - \rightarrow Lumosity may be a useful tool for this
- Investigate the interaction between wildfire smoke and PM_{2.5}
- Examine role of individual behavior in associations

- Explore cognitive domains other than attention
 - \rightarrow Lumosity may be a useful tool for this
- Investigate the interaction between wildfire smoke and PM_{2.5}
- Examine role of individual behavior in associations
- Evaluate associations in other populations and regions and using different measures of cognitive performance
 - \rightarrow Validate findings and further elucidate relationships

Additional Information

Journal Article:

Cleland et al (2022). Short-term exposure to wildfire smoke and PM_{2.5} and cognitive performance in a brain-training game: A longitudinal study of U.S. adults. *Environmental Health Perspectives*, 130(6). https://doi.org/10.1289/ehp10498

Interactive Dashboard:

https://ehs-bccdc.shinyapps.io/PMSmoke_Attention_Dashboard/

QLESTIONS?

cleland.stephanie@epa.gov

Dataset Characteristics

	Western US	Contiguous US
	(n= 1,809)	(n=10,228)
Female	1,250 (69.1%)	7,214 (70.5%)
Age Group		
18-29	147 (8.1%)	859 (8.4%)
30-39	254 (12.0%)	1,238 (12.1%)
40-49	276 (15.3%)	1,530 (15.0%)
50-59	457 (25.3%)	2,752 (26.9%)
60-69	427 (23.6%)	2,614 (25.6%)
70+	248 (13.7%)	1,235 (12.1%)
Education		
Some High School	34 (1.9%)	152 (1.5%)
High School	203 (11.2%)	1,447 (14.1%)
Some College	375 (20.7%)	1,959 (19.2%)
Associates	178 (9.8%)	937 (9.2%)
Professional	91 (5.0%)	419 (4.1%)
Bachelors	576 (31.8%)	3,115 (30.5%)
Masters	278 (15.4%)	1,820 (17.8%)
PhD	29 (1.6%)	190 (1.9%)
Other	45 (2.5%)	189 (1.8%)
Device		
Android	606 (33.5%)	3,462 (33.8%)
iPad	264 (14.6%)	1,638 (16.0%)
iPhone	668 (36.9%)	3,858 (37.7%)
Web	271 (15.0%)	1,270 (12.4%)
Habitual	146 (8.1%)	873 (8.5%)

	Western US	Contiguous US
	(n= 1,809)	(n=10,228)
Attention Score, mean (SD)		
All 20 plays	13,161.8 (4,202.5)	13,075.5 (4,108.7)
1 st play	9,721.5 (4,189.3)	9,645.7 (4,093.6)
20 th play	14,317.2 (3,928.0)	14,250.7 (3,795.7)
Days Between Plays, mean (SD)	8.4 (15.1)	8.3 (14.0)
Hour of Day Played, mean (SD)	13.8 (5.6)	13.7 (5.6)
Daily PM _{2.5} (µg/m³), mean (IQR)	10.0 (6.2)	8.7 (5.0)
Hourly PM _{2.5} (µg/m³), mean (IQR)	10.2 (6.2)	9.3 (5.2)
Smoke Density, # (%) of observations		
None	29,512 (81.6%)	-
Light	3,859 (10.7%)	-
Medium	1,318 (3.6%)	-
Heavy	1,491 (4.1%)	-