

Guidelines for Canadian Drinking Water for Lead

France Lemieux Water and Air Quality Bureau NCCEH Webinar March 24, 2022

YOUR HEALTH AND SAFETY ... OUR PRIORITY.

Lead Health Effects

 Lead internationally accepted as non-threshold toxicant by many agencies (Health Canada, U.S. EPA, CDC)

- no safe level of Pb in children's blood established

- Lead exposure is associated with many health effects but decreased IQ is considered the critical effect:
 - Strongest evidence for a causal effect
 - Children were affected at the lowest blood lead levels studied

Guideline for lead

- Maximum acceptable concentration (MAC) of 0.005 mg/L (5 ppb)
- Sampling for typical exposure
 - At population level
- Includes:
 - Factors affecting exposure
 - Sampling considerations
 - Lead variability (particulate/dissolved)
 - Monitoring considerations

- Lead in drinking water needs to be measured at the tap
- Lead service lines can contribute at least 50–75% of lead in drinking water
 - Leaded brass and lead solder can also be important sources of lead in drinking water, especially in buildings
- Lead levels can be highly variable

Sampling considerations

- Different sampling protocols will achieve different objectives
 - Some may achieve more than one objective
- Sampling protocol depends on objective
 - Exposure
 - Investigative/diagnostic
 - Treatment performance
 - Compliance

- Sampling protocol should capture
 - ─ Variability → because exposure varies

Sampling protocols and objectives

Objective	Sampling type	Protocol
Regulatory compliance for lead and/or Corrosion control efficacy	First draw (U.S. EPA)	6+ hr stagnation Collect 1 L
	RDT (UK/EU)	Random sample collection without prior flushing; Captures variable stagnation; Collect 1 L
	30MS (Ontario)	2–5 min. flush; 30 min. stagnation; Collect first two liters
Determination of lead sources (plumbing/lead service line) and/or ldentification of type of lead	Profile (or sequential) sampling –traditional	Defined stagnation time 10–20 sequential samples of a defined volume (125 mL, 250 mL, 1 L, etc.)
	Profile sampling that stimulates particle release	Traditional profile sampling at increasingly higher water flow rate (low, medium and high)
	Fully flushed sampling	5 min. flush; Collect 1 L and compare to validated threshold for presence of LSL
	3T's for schools and childcare facilities: revised manual, U.S. EPA	Overnight stagnation; Collect first 250 mL from all taps and fountains; Sample results from each facility should be compared to prioritize follow-up sampling and remediation
Exposure assessment	Composite proportional	Captures actual water use (and variability); Device collects 5% of every draw from the tap for consumption during 1 week
	30MS	5 min. flush; 30 min. stagnation; captures inter-use time Collect first two liters and average results
	RDT	Random sample collection without prior flushing; Captures variable stagnation and inter-use time; Collect 1 L

Factors affecting lead release

Dissolved lead release

- Water quality
- Surface area of lead surface (pipe length, diameter)
- Stagnation time of water
- Particulate lead release
 - Physical disturbances (hydrant flushing, road work, etc.)
 - LSL replacement (full or partial)
 - Galvanic corrosion (connection of two different metals)
 - Hydraulic disturbances and transport of particles
 - Stagnation time of water

Lead variability

- Dissolved lead release is
 reasonably well characterized
- Particulate lead release is
 random and mostly unpredictable
 - Usually defined as > 0.45 μ m
 - Increases with stagnation, flow rate, galvanic corrosion
 - Can be the main form of lead
 - Linked to lead spikes
 - Challenges with analysis (i.e., acidification)

One single aerator...

TOTAL Pb = SOLUBLE Pb + PARTICULATE Pb

Source: Deshommes et al., 2010

Correlation between particulate lead and metals

- Metals can accumulate on top of iron and lead
 in distribution system
- Iron (Fe) and manganese (Mn) scales accumulate lead

- Fe and Mn scales can be released after full or partial LSL replacement
- Increased release of particulate lead
- Red water/discolouration events result in release of metals such as lead
 - Need to monitor these events

Sampling

- What does a sample result tell you?
 - Depends on how it was taken
- 6 hours first and second draw
- 30 minutes first and second draw
- 5 minutes fully flushed samples
- Random daytime
- Profiling sampling after 30 min and 6 hour stagnation

Conclusions of sampling studies

- Fully flushed protocol not representative of average exposure
- 30MS representative of average exposure and reproducible but underestimates exposure

 representative of average inter-use stagnation time
- RDT representative of average exposure but less reproducible, so need more samples
- RDT captures variability but over-estimates

 representative of average inter-use stagnation time
- Cannot use RDT and 30MS interchangeably

Monitoring

- Needs to address residential sites
 - Single family homes
 - Multi-dwelling residences
- Needs to consider practicality/customer acceptability
- Should include buildings and schools
 - Capture vulnerable population
 - Different challenges (fittings, faucets, bubblers)
- Should address variability, building type, seasonal differences, occupancy/water use
- Target high risk areas/zones

Monitoring considerations

- Sampling type, locations and number
 - Identify priority sites & locations
 - Homes with LSLs (full or partial) should be prioritized
 - Guidance on site selection when can't sample homes with LSLs
- Protocol for large buildings and schools
 - Difficult to assess 'representative' sample
 - Needs be practical/realistic for large buildings and schools

Strategies to reduce lead

- Full lead service line replacement is best approach
- Partial lead service line replacement reduces lead
 - May cause release of lead for several months
 - Reduction may not mirror percentage of line removal
- Corrosion control
 - May not be sufficient to reduce lead concentrations when water is supplied through a lead service line
- Use low lead materials (comply with NSF 372 and NSF 61) for plumbing and distribution systems
- Filters work well but a temporary measure

System basics

- Characterization of water quality (pH, alkalinity, cations, anions, Fe, Mn, etc.) is critical
 - Provides information on possible issues
 - Can inform best strategies for mitigating lead
 - Measure pH onsite for accuracy
- Get to know your system materials
 - LSLs present?
 - Galvanic connections?
 - Brass fittings (faucets, valves, etc.)

- Fewer resources to address issues

 May require consultant, additional staff
- Footprint of treatment plant may limit corrosion control strategies
- Training may limit options
 - Treatment chemicals that can be used
 - Adjustments to water quality
 - Sampling capacity

Small systems strategies

- Manganese and iron removal have many benefits!
 - Key to making pH adjustment easier
 - Minimizes accumulation and release of metals
 - Can reduce disinfectant /oxidant demand
- CSMR can help predict galvanic corrosion
 Need to know chloride and sulfate anion concentrations
- Detection of LSLs can be done with simpler sampling methods
 - Sequential sampling is ideal but flushed sample are also a good tool
 - Need to determine screening threshold for lead
- Sampling plans that cover more than 1 year

Questions?

Sampling & treatment: France.Lemieux@hc-sc.gc.ca

Lead health effects: <u>Richard.Carrier@hc-sc.gc.ca</u>

Corrosion control strategies

• pH adjustment

- Sodium silicate (cold water)
- KOH (cold water and handling requirement advantages)
- Aeration can be used if there is free CO_2
 - Can calculate free CO₂ using pH and alkalinity
- Alkalinity adjustmtent
 - Limestone contactors
 - Lime softening
- Avoid use of copper in high alkalinity ground waters
- Orthophosphate may be only option in some cases

Lead Sampling Survey in Children's Facilities, 2018

Tony Thepsouvanh Senior Environmental Public Health Officer ISC, FNIHB, Alberta Region

Indigenous Services Services aux Canada Autochtones Canada

Presentation Outline

- Role of ISC FNIHB
- Purpose of Sampling Survey
- Overview of Sampling Plan
 - -Resampling Protocol
 - -Communication of Results
- Challenges
- Resource Demands
- Advice & Lessons

Role of ISC, FNIHB

- The Environmental Public Health (EPH) program is mandated public health program in First Nations communities and responsible for the implementation and oversight of drinking monitoring activities.
- The purpose of the monitoring program is to ensure safety of the drinking water supply and to protect public health.
- This is achieved through routine sampling, interpretation of data and reporting to the communities.
- Monitoring is done for all water system types including public and private systems, as well as potable water hauling vehicles.
- Testing for bacteriological and chemical quality.
 ISC INDIGENOUS SERVICES

Role of ISC, FNIHB

- Due to our regular sampling activities of all drinking water systems and ongoing monitoring of water quality parameters, we had existing data on baseline levels of all health-based parameters of the GCDWQ.
- No lead exceedances or concerns were identified in any public or semi-public water system in the region based on routine bi-annual sampling.
- Not aware of any lead service lines, as much of the distribution infrastructure in communities was put in after the era of lead piping.

Project Overview

- Sampling was completed at all children's facilities including schools, daycares and head starts on First Nations communities in the Alberta Region.
- Children are at highest risk of negative health impacts such as CNS, kidney, reproductive system effects/adverse neurodevelopment and behavioural outcomes from exposure to lead therefore monitoring these facilities was prioritized.
- Sampling was conducted between May June 2018.

- Short timeline for completion.

Project Purpose

- The sampling survey was completed in anticipation of MAC change in the GCDWQ from 0.01 mg/L to 0.005 mg/L.
- The objective was to screen children's facilities for lead in taps used for drinking, establish a baseline of existing conditions, identify exceedances and provide guidance on mitigation.
- Where exceedances were identified, our EPHOs would make recommendations for remedial measures that reduce or eliminate exposure.

Sampling Plan

- All outlets used for drinking and/or cooking purposes were identified for sampling such as:
 - -drinking water fountains.
 - -kitchen taps.
 - -bathroom taps.
 - -home economics rooms.
- EPHOs consulted with facility operators / administrators to determine which sites needed testing.

Random Daytime Sampling

- RDT method was used per Annex 5 (FNIHB guidance document).
- Intended to represent a typical exposure scenario with no prior flushing before sample collection.
- Samples collected while facility in normal operation, during warmest months.
- Two duplicate samples collected immediately after opening cold water tap.
- Average of the two samples used to calculate lead concentration.

Resampling Protocol

- Random daytime samples that exceeded the proposed MAC were resampled twice:
 - after a 30 second flush and a 2 minute flush.
- Purpose additional sampling:
 - -Confirms the presence of the lead exceedance.
 - Provide insight on where lead might be getting into water (i.e. service line vs the fixture itself vs. upstream interior plumbing.)
 - If 30 second flush exceeded but 2 minute flush did not, it was deemed to come from the fixture.
 - If 2 minute flush sampled exceeded but 30 second flush did not it was deemed upstream source.

Resampling Protocol

 Flush Sampling Protocol was referenced in the EPA document "3Ts for Reducing Lead in Drinking Water" and was used as guidance for our survey.

Sampling Plan

- Total number of samples taken: 1422
- Total number of facilities sampled: 132
- Number of Exceedances (RDT): 239 (17%)
- Total number of re-samples taken (flush samples): 239
- Total number of samples exceeding on resampling: 41 (17%)
- Total number of all sampling points with confirmed lead exceedances was 41/1422 (2.9%)

Sampling Plan

- No reported exceedances that were in an order of magnitude that represented an acute health risk.
- In most cases of exceedances, it was concluded that source of lead was related to the fixture versus the building plumbing system.

Tools and Technology

- All samples were test at ALS labs, our contract service provider
- Palintest for lead analysis was used a quick measurement following remediation.
- Garmin handheld was used to collect GPS coordinates at all facilities where lead was sampled.
- Surface Pro tablets used to collect and store information.
- SharePoint Microsoft's web-based platform for data storage and management.

- EPHOs informed community contacts directly that lead sampling was going to take place and why.
- Letter containing results, interpretation and recommended remedial actions were set to community contacts.
- Engagement and sharing of results with colleagues in ISC, Regional Operations (formerly Indian and Northern Affairs Canada).
- Worked with Regional communications personnel to develop media lines in case they were needed.

- Sample sites with no exceedances were informed that no remedial actions were required.
- Handouts shared explaining the upcoming changes to the guideline.

- Sample sites with exceedances after resampling were provided guidance on short and long-term remedial measures to reduce lead exposure.
- Short term/immediate mitigation strategies:
 - Turning off the water valve so water cannot be accessed from a particular fixture;
 - Signage to inform users to not drink water/handwash only;
 - Implement a flushing program for the affected facility/fixtures;
 - Use bottled water for drinking and cooking purposes;
 - Where appropriate, work with water plant operators to control corrosivity of the water.

- Medium to long term mitigation strategies may include:
 - Identification and replacement of lead containing faucets or fixtures with lead – free materials.
 - –Installation of point-of-use devices that meant NSF 53 for lead reduction. E.g. carbon filters, reverse osmosis. (<u>http://www.nsf.org/</u>)
- EPHOs were available to conduct follow-up sampling and interpretation following remedial work.
- Our program remains available to provide support to communities on lead.

Stakeholders

- First Nations Communities
 - Health, Public Works, School Administrators, Health Protection Subcom. of HCOM, Assembly of Treaty Chiefs (AoTC)
- ISC Regional Operations (Education, Capital Program for water and wastewater)
- Regional Communications
- Regional Senior Management
- Medical Health Officers
- EPHS data team

Communication to Stakeholders

- The issue of lead in drinking water was prolific at the time (Flint, Michigan).
- EPHS was required to ensure all tables of leadership were informed of the sampling program and follow up plan (AOTC, HCOM).
- Effective risk communication was (is) paramount.

- Development and completion of pre-sampling surveys at all community facilities.
- Development of results management plan.
- Major delays with contracted laboratory. (Capacity issues, bottle shortage and reporting delays).
 - -Causing a huge bottleneck/influx of results (graph).
- Completion of sampling by the end of summer timeline.
- Annex 5 did not address follow up sampling.

21 **ISC** INDIGENOUS SERVICES CANADA

- Communities approaching ISC, Regional Operations seeking funding.
- ISC, Regional Operations felt they were not well informed, despite regular communication which led to some frustrations.

Resource Demands

- All members of EPHS including EPHOs, data team, admin. team, summer students and management team were involved in completing this project comprehensively and within timeline.
- Upon completion, the approx. number of hours spent on the project were:
 - 441 on pre-sampling surveys;
 - 136 on sampling;
 - 37 on resampling;
 - 100 on reporting;
 - 509 on data management;
 - 111 on other activities;
 - 585 on travel;

Total: 1919 man-hours

Advice & Lessons

- Triaging/pre-sampling visits of facilities and sites to be sampled.
- Develop a rigorous data management plan.
 - Ensure good communication with lab service provider to avoid issues.
- Establish follow-up plan after initial sampling finds exceedances.
- Develop communications and action protocol for exceedances.

Advice & Lessons

- Remain engaged with stakeholders, including:
 - –ISC, Regional Operations throughout the sampling project, especially regarding facilities or communities of concern.
 - -Regional communications.
 - -Regional Medical Health Officer on messaging.
- Follow-up directly with facilities and contacts where exceedances identified.
- Practice effective communication to manage perceptions of risk.

Tony.Thepsouvanh@sac-isc.gc.ca

Canada

Indigenous Services Services aux Autochtones Canada

