National Collaborating Centre for Environmental Health

Centre de collaboration nationale en santé environnementale

COVID-19 Risks and Precautions for the performing arts

NCCEH Evidence scan

Juliette O'Keeffe MSc, PhD

Environment Health and Knowledge Translation Scientist National Collaborating Centre for Environmental Health

Sept 30, 2020

COVID-19 resources for EH

Full report available at <u>NCCEH.CA</u> ...and many other COVID-19 resources

Outline

- 1. Notable COVID-19 clusters and outbreaks
- 2. Understanding transmission risks
- 3. Precautionary measures

4. Q&A

Outline

1. Notable COVID-19 clusters and outbreaks

2. Understanding transmission risks

3. Precautionary measures

4. Q&A

Notable outbreaks in performing arts settings

Choirs: USA, France, Germany, Netherlands

- Feb-Mar 2020
- High attack rate among participants in rehearsals and performances (>80% in some cases)
- Hospitalizations and deaths

Theatre: Japan

- Jun-Jul 2020
- Small theatre (186 seats, running at 50% capacity)
- Following 5 days of performances, 30 cases among staff, cast and theatregoers

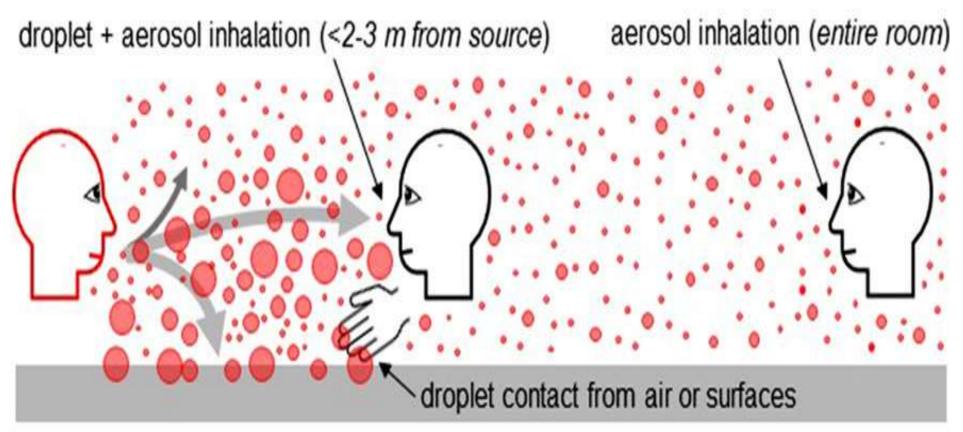
Dance: Russia ballet companies

- Apr 2020 Bolshoi ballet, 34 cases identified following pre-performance screening
- Aug 2020 Mariinsky ballet, over 50 cases including dancers and coaches; some hospitalizations

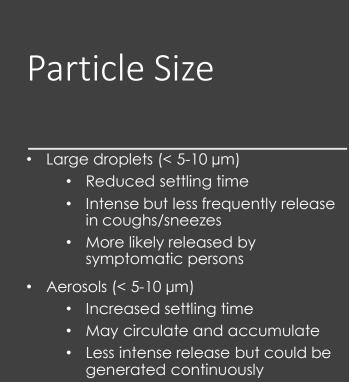
Bands/Instrumental

- Japan 11% of 61 clusters in Japan were associated with music-related events including live concerts
- USA High school band, Touring metal bands returning from Europe

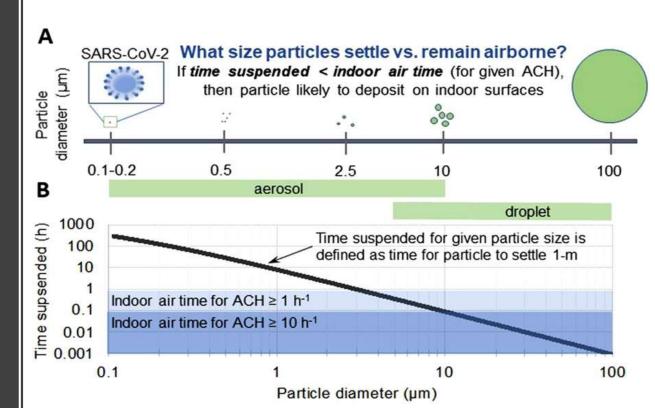
Outline


1. Notable COVID-19 clusters and outbreaks

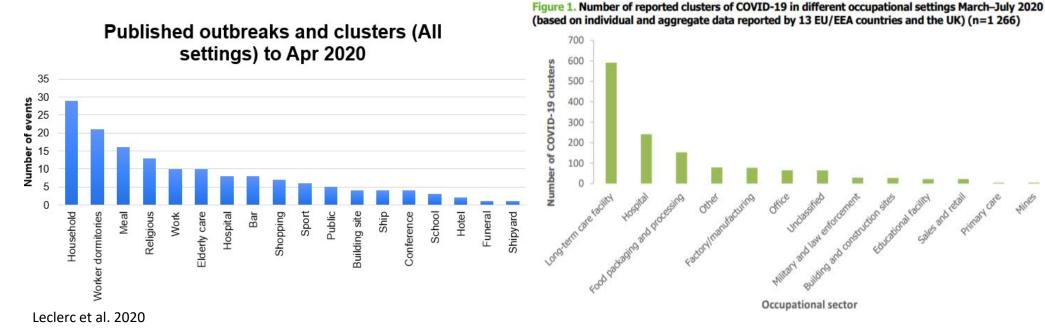
2. Understanding transmission risks


3. Precautionary measures

4. Q&A



Kohansky et al. 2020. Review of indoor aerosol generation, transport, and control in the context of COVID-19 International Forum of Allergy & Rhinology, First published: 11 July 2020, DOI: (10.1002/alr.22661)


- Symptomatic <u>AND</u> asymptomatic persons
- Potential to reach lower respiratory tract

Kohansky, Lo and Waring. Review of indoor aerosol generation, transport, and control in the context of COVID-19 International Forum of Allergy & Rhinology, First published: 11 July 2020, DOI: (10.1002/alr.22661)

Common factors in many outbreaks

- Indoors
- Crowded spaces
- Close contacts
- Lots of interaction (greeting, talking, laughing, cheering, shouting, singing, sharing of food/objects)
- Long duration of interaction
- Poor ventilation
- Prevalence of community spread of the virus (symptomatic and asymptomatic)

European Centre for Disease Control and Prevention (2020)

But...what are the transmission risks associated with performing arts?

Risks associated with gathering in groups for rehearsals or performances

Close contact

- Group or partnered performance segments
- Sharing of sheet music, props, stands, microphones, dressing rooms etc.

Increases risk of exposure to respiratory droplets and short-range aerosols

Indoors over long duration

- Dressing rooms, backstage, orchestra pits, enclosed rooms
- Limited ventilation reduces the dilution and dispersion of aerosols

Increases risk of exposure to accumulated aerosols

Sharing of surfaces or objects

 Musical stands, chairs, books, microphones, instruments, props, costumes, makeup and brushes, refreshments, etc.

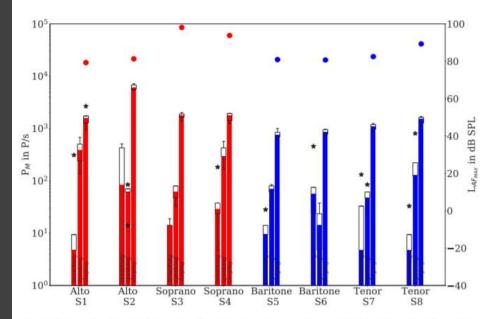
Increased risk of exposure via fomites.

Risks associated with vocalization during singing/acting

Vocalization affects the <u>quantity</u> and <u>size</u> of respiratory droplets and aerosols emitted

Quantity

- Vocalization of any type releases more than breathing
- Volume increases quantity released
- Type of phonation and articulation can affect quantity released


Size

- Most are aerosols (\leq 5-10 µm) and majority \leq 1 µm
- These can remain suspended and travel further than large droplets
- Aerosols are much more likely to penetrate the lower respiratory tract

Comparing singing and speaking to breathing

- Laser particle counter study, 8 subjects during breathing, speaking and singing
- Significantly higher emission rates for singing compared to mouth breathing and speaking; Emissions increased with volume
- Variation between singers; Higher emission rates for phonation by females vs. males in this study

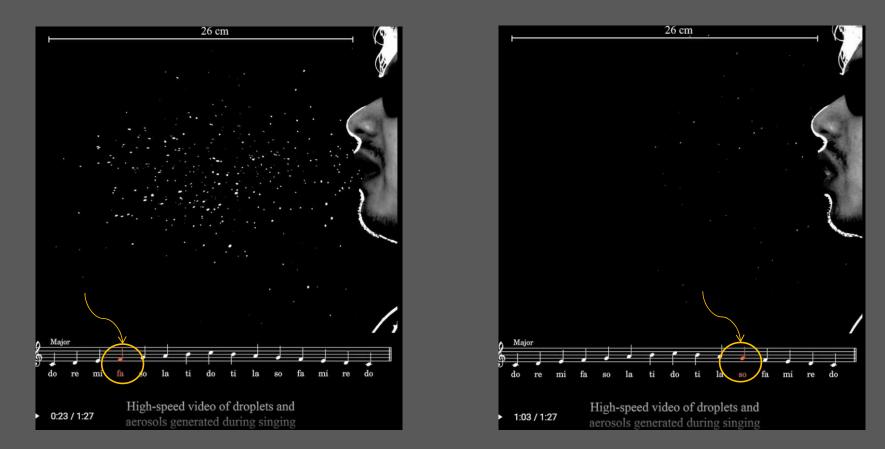

Also see Spahn and Richter 2020. Risk Assessment of a Coronavirus Infection in the Field of Music. Fourth update (2020 July 17). https://www.mh-freiburg.de/en/university/covid-19-corona/riskassessment

Figure 2. Boxplots of the particle source strengths (bars represent the median) for different gender, voice classifications and tasks: mouth breathing, speaking and singing (left y-axis). Only particles \leq 5 µm were considered. For singing, the maximum sound pressure levels LAF_{MAX} are also shown (full circles, right y-axis).

Mürbe et al. 2020

Visualization of droplets while singing

Bahl P, de Silva C, Bhattacharjee S, Stone H, Doolan C, Chughtai AA, et al. **Droplets and Aerosols generated by singing and the risk of COVID-19 for choirs**. Clin Infect Dis. 2020. Available from: https://doi.org/10.1093/cid/ciaa1241

Risks associated with playing of musical instruments

Strings, Keys, Percussion

- Potential for fomite transmission via shared instruments
- Potential for increased release of aerosols if playing more energetically

Brass and Woodwinds

- Release of respiratory particles from instrument bell, or keys most of which are aerosols
- Current studies show contrary findings in comparison between different instrument types
- Quantity released can vary by tube length (brass), mouthpiece design (woodwinds), and playing style
- Breath condensate presents droplet, aerosol or fomite risk if not carefully collected and disposed

Risks associated with **dance**

- Clusters and outbreaks related to fitness, ballet companies etc. indicate transmission could be due to many factors
 - Gathering in groups, social interactions
 - Inside over long duration, close contacts, poor ventilation
 - Vigorous physical activity
- Limited study of risks specific to dance
- Study of transmission risks due to vigorous physical activity indicates it can increase the quantity and velocity of air inhaled and exhaled
- Active movement could lead to increased air turbulence and resuspension of settled droplets

Outline

1. Notable COVID-19 clusters and outbreaks

2. Understanding transmission risks

3. Precautionary measures

4. Q&A

Minimizing the Risks: Personal measures

- Symptomatic or potentially exposed persons should stay home
- High risk/susceptible persons should stay home
- Limiting social contacts outside of performance or rehearsal cohorts where they are used
- Taking precautions outside of the group (distancing, face coverings, hand hygiene)
- Avoiding close contact, handshakes, sharing of objects/equipment and preparing offsite (makeup, costumes etc.)

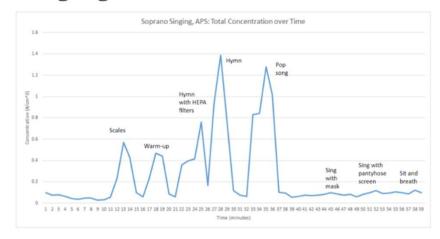
Minimizing the Risks: Distancing

- Maintaining 2 m between performers, coaches, instructors, crew etc. helps reduce spread due to LARGE respiratory droplets
- Distancing can also help to reduce some of the short-range transmission of smaller droplets
- Maintaining distance is easier in larger venues/rooms
- Ensure distancing is maintained for <u>ALL</u> activities (e.g. entry/exit, warm up spaces, bathrooms)
 - Wind instruments should account for length of instrument and may require greater than 2 m
 - Dancers or actors may consider designated performance/practice zones to avoid close encounters
- Avoiding face to face arrangements; Consider creative adaptations for scenes requiring close contact; or limit to persons from the same household where possible

Minimizing the Risks: Reduce density and duration

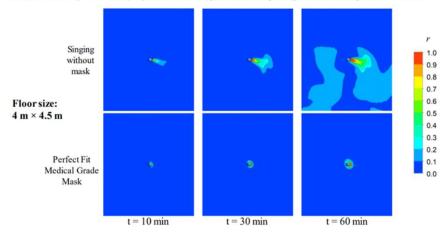
- Larger spaces with fewer faces
 - Reduced loading of infectious particles; increased dilution and dispersion of accumulated aerosols
 - Solo performances, Cohorts/bubbles
- Shorter duration (e.g. 30 minutes) and breaks between rehearsal or performance
 - Reduces accumulation of potentially infectious particles
 - Breaks should be in a different location, and not compromise distancing principles or alternate between rooms/rehearsal spaces

Minimizing the Risks: Masks


- Masks can block some emissions and reduce exposure to droplets and aerosols
- Effectiveness depends on
 - Fit without gaps around the nose bridge, chin, and sides
 - **Filtration** materials that effectively block the movement of both droplets and aerosols
- Most homemade masks and adaptations of traditional masks have not been assessed for their effectiveness
- Adaptations for various uses
 - Singers' masks for greater articulation and mouth movement
 - Brass and woodwind players
 - Instrument bell-covers
- Consider as an added layer of protection with other measures

International Coalition for the Performing Arts – preliminary results

- Studies indicate that a higher concentration of respiratory particles are released during singing compared to breathing
- Measurements indicate the effectiveness of masks and screens for reducing release of respiratory particles
- Models of infection risk indicate risk increases over time; masks reduce risk overall


International Coalition of Performing Arts. 2020

Singing APS (0.5-20 μ m particles)

Indoor Case Study: Mask Impact on Infection Risk

Infection risk r by Wells-Riley equation at the height of mouth opening, with breathing rate of 8 L/min.

Minimizing the Risks: Ventilation

Outdoors and uncrowded

Large indoor space with mechanical/natural ventilation (high ACH)

> Smaller indoor space with mechanical or natural ventilation (high ACH)

> > Avoid confined indoor space & no ventilation

Minimizing the risks – Cleaning and disinfection

- Good hand hygiene and routine cleaning and disinfection of shared surfaces, including dance barres, floors etc.
- Cleaning and disinfection of shared equipment between users (props, musical stands, instruments)
- Cleaning and disinfection of instrument surfaces and mouthpieces routinely to reduce the possibility of fomite transmission (following recommended practice for the instrument)
- Collect and dispose of condensate followed by handwashing and hand sanitizing to prevent cross contamination of the instrument surface, chairs, music stands, or the floor

Minimizing the risks audiences

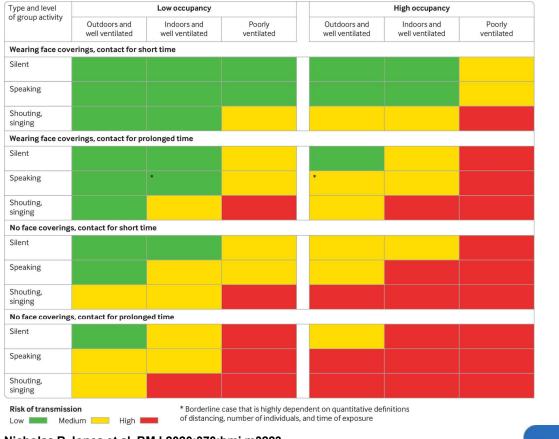
- Refer to occupancy limits and venues/workplace specific criteria for your jurisdiction
- Principles of encouraging distancing, mask wearing, good hand hygiene, and respiratory etiquette should be applied
- Communication with audiences prior to events can allow organizers to set out COVID-19 safety protocols, screening, and gather information for contact tracing
- Some guidance recommends discouraging audiences from singing, cheering, dancing, and laughing. Alternatives can be suggested for non-vocal participation, hand-held noisemakers, clapping etc.
- Innovations in audience layout and partitions, reducing crowding at entrances and exits, removing congregation points, using outside venues or improving ventilation inside can all add to layered approach to reducing risks

In summary

- Outbreaks and clusters in performing arts settings share common features of outbreaks related to **gathering in groups**
- Additional risk factors due to increased release of droplets and aerosols may also contribute to transmission in some settings due to • Vocalization
 - Playing of wind instruments
 - Vigorous physical activity

Layering of precautions can reduce transmission risks

Risk Assessment


- Various approaches (WHO, Spahn and Richter 2020, PHAC, etc.)
- Consider the specific circumstance
 - Risk level of participants
 - Risk level of the venue
 - Risk level of the activity
 - Level of community transmission
- Consider mitigation potential
 - Layering of mitigation measures, following local PH advice
- Does mitigation eliminate or reduce risks sufficiently?
 - If not, what else can be done?

Total Mitigation Sco	ore from COVID-19	Mitigation Tab (%)		1			
Risk Versus Mitigation Decision Matrix					aving recurring negative test- ports, Wiener Philharmonic, Thomaner) Icing measures necessary	Very low Risk	
		Total Mitigat	tion Score (%)				
Total Risk Score	76-100	51-75	26-50	0-25	of Minimum Distance (radial 2m/61/2 feet, and 2m in front, staggered arrangement)	e e e e e e e e e e e e e e e e e e e	
0	VERY LOW	VERY LOW	VERY LOW	LOW	s		
1	VERY LOW	LOW	LOW	MODERATE	rge ("Cathedral-Situation") ir exchange rate (HAVAC (6/h)) or sufficient		
2	LOW	LOW	MODERATE	MODERATE	ittent ventilation (CO ₂ -traffic light) g surgical masks while singing		
3	MODERATE	MODERATE	HIGH	HIGH	c Measures in Brass-/Wind Instruments s, condensation water)		
4	HIGH	HIGH	VERY HIGH	VERY HIGH			
5	VERY HIGH	VERY HIGH	VERY HIGH	VERY HIGH	s during entrance screening ce of distances		
KEY					,5m lateral and 2m in front), ople in a room	High Risk	
VERY LOW	Overall risk of trans VERY LOW	smission and furthe	r spread of COVID-1	9 is considered	entilation		
LOW	Overall risk of transmission and further spread of COVID-19 is considered				lisk awareness lisk reducing measures	Ultra-High risk	
MODERATE	Overall risk of trans	smission an <mark>d furt</mark> he	r spread of COVID-1	9 is considered	-		
HIGH	Overall risk of trans HIGH	smission and furthe	r spread of COVID-1	9 is considered	Spahn/Richter 2020: Risiko Management Corona in the field of m ifection risk depending on the risk-reducing measures (based or		
VERY HIGH	Overall risk of trans	smission and furthe	r spread of COVID-1	9 is considered			

Table 3. Matrix for determining overall risk of contributing to COVID-19 community transmission and next steps

		Risk mitigation potential (from Table 2)						
		Stronger	Moderate	Weaker				
Risk level (from Table 1)	High	Moderate risk of contributing to COVID- 19 community transmission. Increase or strengthen mitigation strategies if possible.	Higher risk of contributing to COVID-19 community transmission. Consider delaying reopening. Increase or strengthen mitigation strategies.	Highest risk of contributing to COVID-19 community transmission. Consider delaying reopening. Increase or strengthen mitigation strategies.				
	Medium	Lower risk of contributing to COVID- 19 community transmission. Maintain mitigation strategies.	Moderate risk of contributing to COVID-19 community transmission. Increase or strengthen mitigation strategies if possible.	Higher risk of contributing to COVID-19 community transmission. Consider delaying reopening Increase or strengthen mitigation strategies.				
	Low	Lowest risk	Lower risk	Moderate risk				

Risk of SARS-CoV-2 transmission from asymptomatic people in different settings and for different occupation times, venting, and crowding levels (ignoring variation in susceptibility and viral shedding rates).

Nicholas R Jones et al. BMJ 2020;370:bmj.m3223

©2020 by British Medical Journal Publishing Group

Risk Calculators

- Based on models and estimates
- COVID-19 Airborne Transmission Estimator (Jimenez 2020)
- Airborne Infection Risk Calculator (AIRC) (Mikszewski et al. 2020)
- Risk Analysis of the transmission of CARS-CoV-2 by aerosols (in German, Trukenmüller 2020)
- Essential inputs
 - Room dimensions
 - Air exchange
 - Number of persons
 - Duration of exposure etc.

This is a	neneral spreads	sheet annli	able to any situation	under th	e assumn	tions of this model	- See notes sh	ecific to this case (if applicable) at the
			ange - change these					come to one cace (in appreadle) at the
			highlighted in yellow			ore advanced appl	ications	
			n't change these unl					
Results a	re in blue the	se are the	numbers of interest f	or most p	people			
Environ	nental Parame	ters					u	
			Value			Value in other u	nits	Source / Comments
Length of	room		20	ft		6.1	m	Can enter as ft or as m (ond
	Width of room		20	ft	=	6.1	m	Can enter as ft or as m (onc
			400	sq ft		37	m2	Can overwrite the m2 one. If
Height			8	ft	=	2.4	m	Can enter as ft or as m (ond
Volume						91	m3	Volume, calculated. (Can al
Pressure			0.95	atm				Used only for CO2 calculation
Temperat	ure		20	С				Use web converter if need
Relative H	lumidity		50	%				Not yet used, but may event
Backgrou	nd CO2 Outdoo	ors	415	ppm				See readme
Duration of event		30	min		0.5	h	Value for your situation of int	
Number of repetitions of event			1	times				For e.g. multiple class meeti
	n w/ outside air		0.7	h-1				
venulation								Value in h-1: Readme: Same
(F	Readme	FAQs	Master-Choir	Class	Subway	Super (-	+) : (1	

Airborne Infection	ator	Δ	IRC	2	115 1. Enter value 20 2. Calculated value		
Version 1.0							20 2. Calculated value
1. ROOM DIMENSIONS	_	5. EXPOSURE SCENARIO	c		6. RESULTS		
Room Area	A	200	(m^{2})	Infectious Occupant #1			Susceptible Occupant A
Ceiling Height	h	4	(m)	Time of Entry	0	(minutes)	Modeled Exposure Time (minutes) = 60
Room Volume	V	800	(m^{3})	Time of Exit	60	(minutes)	Individual Infection Risk (%) = 1.06%
				ER _q from Selector Tab	170	(quanta/hr)	Exposure Time for 0.1% Risk (minutes) = 5
2. INFECTIOUS VIRAL F	REMOVAL	RATE					Exposure Time for 1% Risk (minutes) = 56
Air Exchange Rate	AER	0.5	(hr ⁻¹)	Infectious Occupant #2		_	Maximum Room Occupancy for R ₀ < 1 = 14
Particle Deposition Rate	k	0.24	(hr ⁻¹)	Include in Model?	Yes	←Select	
Viral Inactivation Rate	λ	0.63	(hr ⁻¹)	Time of Entry	60	(minutes)	Continuous Occupancy
Total Viral Removal Rate	IVRR	1.4	(hr-1)	Time of Exit	120	(minutes)	Modeled Exposure Time (minutes) = 120
				ER _q from Selector Tab	170	(quanta/hr)	Individual Infection Risk (%) = 1.58%
3. INITIAL QUANTA COL	CENTRA	TION					Exposure Time for 0.1% Risk (minutes) = 21
n _o	0.0E+0 (quanta/m ³)	Susceptible Occupant A			Exposure Time for 1% Risk (minutes) = 86
				Time of Entry	60	(minutes)	Maximum Room Occupancy for R ₀ < 1 = 9
4. TOTAL TIME OF OCC	UPANCY	1		Time of Exit	120	(minutes)	
Time t 120 (minutes)		IR from Selector Tab	0.54	(m^3/hr)			

Outline

1. Notable COVID-19 clusters and outbreaks

- 2. Understanding transmission risks
- 3. Precautionary measures

National Collaborating Centre for Environmental Health Centre de collaboration nationale en santé environnementale

() 💟 🗓 🖸

thank you!

www.ncceh.ca

Juliette.okeeffe@bccdc.ca

Production of this presentation has been made possible through a financial contribution from the Public Health Agency of Canada.

Selected Key References

Charlotte N. High Rate of SARS-CoV-2 Transmission due to Choir Practice in France at the Beginning of the COVID-19 Pandemic. medRxiv. 2020:2020.07.19.20145326. Available from: https://www.medrxiv.org/content/medrxiv/early/2020/08/05/2020.07.19.20145326.full.pdf.

Feng Y, Marchal T, Sperry T, Yi H. Influence of wind and relative humidity on the social distancing effectiveness to prevent COVID-19 airborne transmission: A numerical study. J Aerosol Sci. 2020;147:. Available from: https://www.sciencedirect.com/science/article/pii/S0021850220300744?via%3Dihub.

Fennelly KP. Particle sizes of infectious aerosols: implications for infection control. The Lancet. 2020 July. Available from https://doi.org/10.1016/S2213-2600(20)30323-4 International Coalition of Performing Arts. International Coalition of Performing Arts Aerosol Study Round 2. Indianapolis, IN: National Federation of State High School Associations; 2020 Aug. Available from: https://www.nfhs.org/media/4030003/aerosol-study-prelim-results-round-2-final.pdf.

Jimenez JL. COVID-19 Airborne Transmission Estimator. 2020. Available from https://tinyurl.com/covid-estimator

Kohansky et al. 2020.. Review of indoor aerosol generation, transport, and control in the context of COVID-19. International Forum of Allergy & Rhinology, First published: 11 July 2020, DOI: (10.1002/alr.22661)

Ledinicky JA et al. Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients. medRxiv. 2020:2020.08.03.20167395. Available from: https://doi.org/10.1101/2020.08.03.20167395 Mikszewski A et al. Airborne Infection Risk Calculator (AIRC). 2020. Available from: https://www.unicas.it/media/4952018/AIRC%20Users%20Manual%201.0%20July%202020.pdf

Mürbe et al. 2020. Aerosol emission is increased in professional singing. Available from: https://depositonce.tu-berlin.de/bitstream/11303/11491/5/muerbe etal 2020 aerosols-singing.pdf National Collaborating Centre for Methods and Tools. COVID-19 Rapid Evidence Reviews. Available from: https://www.nccmt.ca/knowledge-repositories/covid-19-evidence-reviews.

O'Keeffe, J. COVID-19 Risks and precautions for the performing arts. Vancouver, BC: National Collaborating Centre for Environmental Health. 2020 Sep. Available from: https://ncceh.ca/sites/default/files/COVID-19%20Risks%20and%20precautions%20for%20the%20performing%20arts.pdf

Public Health Agency of Canada. Community-based measures to mitigate the spread of coronavirus disease (COVID-19) in Canada. 2020. Available from https://www.canada.ca/en/public-health/services/diseases/2019-novel-coronavirus-infection/health-professionals/public-health-measures-mitigate-covid-19.html# Community gathering spaces

Public Health Ontario. What We Know So Far About... Coronavirus Disease 2019 (COVID-19). 2020. Available from: https://www.publichealthontario.ca/en/diseases-and-conditions/infectious-diseases/respiratory-diseases/novel-coronavirus/what-we-know

Santarpia JL, Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Scientific Reports. 2020;10(1):12732. Available from: https://doi.org/10.1038/s41598-020-69286-3. Spahn C, Richter B. Risk Assessment of a Coronavirus Infection in the Field of Music. Fourth update. 2020 July 17. Available from https://www.mh-freiburg.de/en/university/covid-19-corona/risk-assessment

Tang, Y. Mao, R.M. Jones, Q. Tan, J.S. Ji, N. Li, J. Shen, Y. Lv, L. Pan, P. Ding, X.Wang, Y. Wang, C. Raina MacIntyre, X. Shi, Aerosol Transmission of SARS-CoV-2? Evidence, Prevention and Control, Environment International (2020), doi: https://doi.org/10.1016/j.envint.2020.106039.

World Health Organization. WHO mass gathering COVID-19 risk assessment tool – Generic events. 2020 Jul. Available from: https://www.who.int/publications/i/item/10665-333185