Forest Fires: Impacts on Air Quality and Health

Prabjit Barn CIPHI NB Annual Conference September 30, 2010 | Saint John, NB

National Collaborating Centre for Environmental Health

Centre de collaboration nationale en santé environnementale

Outline

- Air quality
- Health
- Public health's role
- Questions and discussion

Forest fires

- Natural phenomena but have many negative consequences:
 - physical safety
 - economic costs of damaged land and homes, evacuation, and fighting fires
 - air quality
 - health

Forest fires

- Natural phenomena but have many negative consequences:
 - physical safety
 - economic costs of damaged land and homes, evacuation, and fighting fires
 - air quality
 - health

Fires in Russia (2010)

Photo credit: BBC In Pictures

Forest fires

- Deteriorate air quality through smoke emissions
 - release pollutants
 - reduce visibility
- Fire smoke contains¹:
 - particulate matter (PM_{2.5}, PM₁₀)
 - nitrogen oxides (NO_X)
 - carbon monoxide
 - volatile organic compounds
 - plus others

Photo credit: 3D Master; licensed by iStockphoto

Pollution

- Elevated PM levels measured during fires
 2003 fires
 - BC²: 24-hr PM_{2.5} peaks of 200 µg/m³
 - California³: 1-hr PM₁₀ peaks of 1000 µg/m³
- For comparison, Canada Wide Standard for PM_{2.5} (24-hr) is 30 μg/m³

Smoke emissions

- Levels can be high
 - size
 - proximity
 - meteorology
 - topography
- May remain elevated for days to weeks
- Impact local, regional and global air quality

Downtown Calgary

Photo credit: Calgary Herald

Fires may continue to increase

Natural Resources Canada, 2010

Exposure assessment

	Developing countries	Firefighters	Communities
Affected population	Women & children exposed to cooking smoke	Healthy individuals	All ages, health levels
Health impacts	\checkmark	\checkmark	\checkmark

Respiratory effects

- Increased hospital visits for:^{4,5,6,7,8}
 - asthma
 - COPD
 - upper respiratory infections
 - general respiratory problems
 - eye irritation
 - smoke inhalation

Vulnerable groups

- Greater health impacts for^{3, 6, 9,10}:
 - children
 - elderly
 - individuals with pre-existing respiratory or cardiovascular disease

Cardiovascular effects

- Exposure to PM_{2.5} has been linked with cardiovascular effects, including increased:
 - cardiovascular mortality
 - risk of development of cardiovascular disease
 - risk of myocardial infarction

But no studies have found evidence for increased cardiovascular-related hospital visits during forest fires

Gaps

- Nature of forest fires make them difficult to study
- Studies have only looked at short term exposure impacts on health

Role of public health

Public health

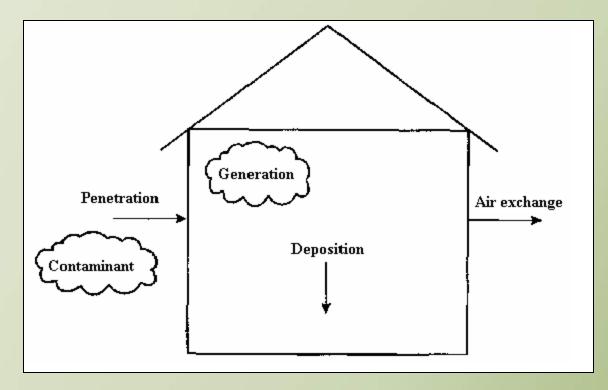
- Inform the public
 - deteriorated air quality
 - potential health impacts
 - exposure reduction measures
- Determine need for evacuation

 due to fire
 - due to smoke exposure

Recommendations

- Stay indoors
- Keep windows and doors closed
- Run air cleaner
- Run air conditioner
- Limit indoor sources
- Keep cool

What's the evidence?



Staying indoors

- Are levels lower indoors versus outdoors?
- Is closing windows and doors enough?

Infiltration

Fraction of outdoor pollutants that penetrate indoors and remain suspended

Modified from Thatcher and Layton (1995)¹¹

Infiltration (cont.)

–	Ра
⁻ Finf	a + k

- F_{inf} = infiltration efficiency
- P = penetration
- a = air exchange
- k = deposition

Estimates of Residential Fine PM Finf

Mean <i>F</i> _{inf}	Season	Study Location	Reference
Non-A.C. = 0.86 A.C. = 0.69	Summer	Uniontown, PA	Suh et al., 1992
0.74	Summer	Virginia & Connecticut	Leaderer et al., 1999
0.74	Spring-Summer & Fall-Winter	Boston, MA	Long et al., 2001
0.70	Fall	Riverside, CA	Ozkaynak et al., 1996 (PTEAM)
0.66	Summer & Winter	Birmingham, AL	Lachenmeyer and Hidy, 2000
0.65	Annual	Seattle, WA	Allen et al., 2003
0.62	Annual	Victoria, BC	Hystad et al., 2009
0.59	Annual	RTP, NC	Wallace and Williams, 2005
0.50	Winter	Boise, ID	Lewis, 1991
0.48	Annual	Los Angeles, CA	Sarnat S. et al., 2006
0.30	Winter	Smithers, BC	Allen et al., in preparation
0.61 0.27	Summer Winter	Prince George, BC	Barn et al., 2008

Reducing infiltration

 Staying indoors is protective but varies between buildings

- Lower F_{inf} values associated with:
 - Winter season
 - Closing windows
 - Newer homes
 - Air conditioning
 - Air cleaner use

Reducing infiltration

 Staying indoors is protective but varies between buildings

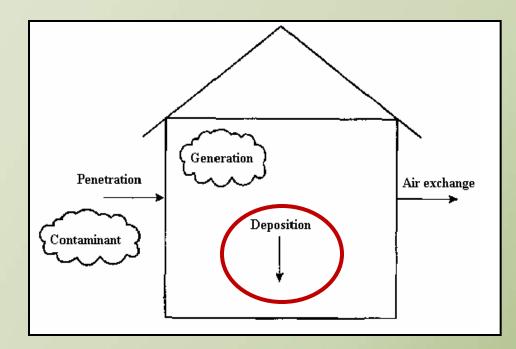
- Lower F_{inf} values associated with:
 - Winter season
 - Closing windows
 - Newer homes
 - Air conditioning
 - Air cleaner use

Lower air exchange rates (AER)

Air exchange rates

 Lower AER means less of what is outside is getting indoors

 Important to ensure that levels of indoor pollutants aren't building up


Reduce indoor sources

Do air cleaners provide protection?

- Exposure reduction?
- Health benefits?

Air cleaners

Theoretically, cleaners reduce F_{inf} by increasing deposition

Air cleaners cont.

Many types and models

- Indoor air is mixture of pollutants
 indoor and outdoor sources
 - types and concentrations
- No air cleaner can remove all pollutants

Air cleaning technologies

Design	Pollutants targeted
Mechanical filters (e.g. HEPA)	Particles
Electronic precipitators	Particles
Ion generators	Particles
Activated carbon filters	Gases
Ozone generators	Gases

Air cleaner use and outdoor-generated PM

Study	Exposure	Air cleaner	Study Period	Findings
Brauner et al. 2008 ¹⁵	Traffic	Portable HEPA	+ filter: 48hr - filter: 48 hr	Lower PM _{2.5} levels during + filter period (GM: 4.7 ± 0.8 μg/m³) vs. - filter period (GM: 12.6 ± 1.4 μg/m³) across homes (n= 21)
Allen et al. 2009 ¹⁶	Wood smoke	Portable HEPA	+ filter: 7d - filter: 7d	Lower $PM_{2.5}$ F _{inf} during + filter period (0.20 ± 0.17) vs filter period (0.34 ± 0.17) across homes (n=25)
Barn et al. 2008 ¹⁷	Forest fire & wood smoke	Portable HEPA	+ filter: 24hr - filter: 24hr	Lower $PM_{2.5}$ F_{inf} on + filter days (0.13 ± 0.14) vs filter days (0.42 ± 0.27) across homes (n= 29)
Henderson et al. 2005 ¹⁸	Fire smoke	Portable ESP	24 - 48hr	Indoor $PM_{2.5}$ levels 63-88 % lower in treatment vs. matched control homes (n= 4 pairs) ; mean 24 hr indoor $PM_{2.5}$ \leq 3 µg/m³ in treatment homes vs. 5.2 – 21.8 µg/m³ in control homes

Air cleaner effectiveness

- Effectiveness varies among studies
 - study design: number of devices, time period, AER, air cleaner placement
- Depends on both:
 - efficiency of device at removing the pollutant
 - amount of air "cleaned" by device

Health benefits

- Only 1 study has looked at health benefits of air cleaners during forest fires
- Use of portable HEPA filters was associated with decreased odds of reporting respiratory symptoms (both frequency and duration)¹⁰
 - fire near Hoopa Valley, California (1999)
 - other interventions not as effective
 - lack of exposure measurements

Interventions

Intervention	Effectiveness
HEPA filter air cleaners (n= 98)	Length of use inversely related to symptom reporting
Public Service Announcements (n=238)	Those able to recall PSAs less likely to report symptoms
Mask use (n=100)	Not effective; use positively correlated with outdoor exposure
Evacuation (n=140)	Not effective

Health benefits in general

- Results are mixed
- Use of cleaners has been associated with:
 - reductions in some asthma and allergy-related symptoms¹⁹
- Greater benefits when used with other interventions, including²⁰:
 - removal of sources, removal of carpets, use of impermeable bed coverings, and reduced AER

Air conditioners

Photo credit: prosado; licensed by iStockphoto

Air conditioners (ACs)

- Use has not been evaluated during forest fires
- ACs reduce AER
 - Some models may also have filters
- Linked to some health benefits but not well established
 - reduced risk of cardiovascular-related hospitalizations found in communities where AC use is prevalent²¹
 - not clear if effect due to other factors (regional, socioeconomic)²²

Recommendations

 Staying indoors and using air cleaners is protective but effectiveness varies

 Less evidence for air conditioner use for exposure reduction, but important in keeping cool

Other community impacts

Photo credit: Babyblueut; licensed by iStockphoto

Smoke intrusion to hospitals

- Local example where rural hospital was experiencing infiltration of fire smoke
 - led to patient complaints
 - visible smoke (no measurements)
- Hospital responded by turning off HVAC system
 Led to increase in CO₂

→ Best approach for hospital to take?

Important questions

- How long will conditions persist?
- What is the exposure?
- What are the health impacts? For whom?
- What can be done?

Short-term responses

Options	Considerations
Keep HVAC on	Hope conditions (weather, wind) change. How long is an appropriate time to wait?
Turn HVAC off	For how long? What about indoor-generated pollutants? What about air flow in different departments?
Turn HVAC off and use air cleaners	In all rooms or in rooms of vulnerable patients? Which type of air cleaners and how many? Purchase, maintenance, storage costs?
Evacuate	What is "trigger" for evacuation? Everyone or only vulnerable patients? To where (i.e. are beds available elsewhere)? Costs?

Long-term response

- Work with ventilation experts to design system
 - High efficiency filtering in "emergency" situations
 - Lower efficiency filtering in "normal" situations
 - Maintain necessary air flow in all departments: labs, patient rooms, surgery rooms, food prep areas

Key Points

- Forest fire are important sources of many pollutants, including PM
- Exposure to smoke is linked to respiratory health impacts; gaps exist for long-term health impacts
- Public health can inform the public about poor AQ, health impacts, and exposure reduction measures
- Current recommendations to stay indoors, and use air cleaners or air conditioners can reduce exposure to pollution and heat indoors

Thank You

Questions? Comments?

www.ncceh.ca www.ccnse.ca

Funded by the Public Health Agency of Canada Photo credits: Alison Trotta-Marshall, Robert Churchill, pierredesvarre, amazonfilm; licensed by iStockphoto

National Collaborating Centre for Environmental Health

Centre de collaboration nationale en santé environnementale CERC BC Centre for Disease Control An Agency of the Provindal Health Services Authority

References

- 1. Naeher LP, Brauer M, Lipsett M, Zelikoff JT, Simpson CD, Koenig JQ, Smith KR. Woodsmoke health effects: A review. Inhal Toxicol. 2007 Jan;19(1):67-106.
- 2. Moore D, Copes R, Fisk R, Joy R, Chan K, Brauer M. Population health effects of air quality changes due to forest fires in British Columbia in 2003: estimates from physician-visit billing data. Can J Public Health. 2006;97(2):105-8.
- 3. Künzli N, Avol E, Wu J, Gauderman WJ, Rappaport E, Millstein J, Bennion J, McConnell R, Gilliland FD, Berhane K, Lurmann F, Winer A, Peters JM. Health effects of the 2003 Southern California wildfires on children. Am J Respir Crit Care Med. 2006;174(11):1221-8.
- 4. Lee T-S, Falter K, Meyer P, Mott J, Gwynn C. Risk factors associated with clinic visits during the 1999 forest fires near the Hoopa Valley Indian Reservation, California, USA. Int J Environ Health Res. 2009;19(5):315-27.
- 5. Mott JA, Mannino DM, Alverson CJ, Kiyu A, Hashim J, Lee T, Falter K, Redd SC. Cardiorespiratory hospitalizations associated with smoke exposure during the 1997 Southeast Asian forest fires. Int J Hyg Environ Health. 2005;208(1-2):75-85.
- 6. Duclos P, Sanderson LM, Lipsett M. The 1987 forest fire disaster in California assessment of emergency room visits. Arch Environ Health.1990;45(1):53-8.
- 7. Moore D, Copes R, Fisk R, Joy R, Chan K, Brauer M. Population health effects of air quality changes due to forest fires in British Columbia in 2003: estimates from physician-visit billing data. Can J Public Health. 2006;97(2):105-8.
- 8. Viswanathan S, Eria L, Diunugala N, Johnson J, McClean C. An analysis of effects of San Diego wildfire on ambient air quality. J Air Waste Manag Assoc. 2006 Jan;56(1):56-67.
- 9. Delfino RJ, Brummel S, Wu J, Stern H, Ostro B, Lipsett M, Winer A, Street DH, Zhang L, Tjoa T, Gillen DL. The relationship of respiratory and cardiovascular hospital admissions to the southern California wildfires of 2003. Occup Environ Med. 2009;66(3):189-97.
- 10. Mott JA, Meyer P, Mannino D, Redd SC, Smith EM, Gotway-Crawford C, Chase E. Wildland forest fire smoke: health effects and intervention evaluation, Hoopa, California, 1999. West J Med. 2002;176(3):157-62.
- 11. Thatcher TL, Layton DW. Deposition, resuspension, and penetration of particles within a residence. Atmos Environ.1995;29(13):1487-97.

References cont.

- 12. Green R, Simpson A, Custovic A, Faragher B, Chapman M, Woodcock A. The effect of air filtration on airborne dog allergen. Allergy.1999 May;54(5):484-8.
- 13. Cheng YS, Lu JC, Chen TR. Efficiency of a portable indoor air cleaner in removing pollens and fungal spores. Aerosol Sci Technol.1998;29(2):92 - 101.
- 14. Batterman S, Godwin C, Jia C. Long duration tests of room air filters in cigarette. Environ Sci Technol. 2005 Sep 15;39(18):7260-8.
- Brauner EV, Forchhammer L, Moller P, Barregard L, Gunnarsen L, Afshari A, Wahlin P, Glasius M, Dragsted LO, Basu S, Raaschou-Nielsen O, Loft S. Indoor particles affect vascular function in the aged: An air filtration-based intervention study. Am J Respir Crit Care Med. 2008 Feb 2008;177(4):419-25.
- 16. Allen R, Karlen B, van Eeden S, Carlsten C, Leckie S, Chu W, Brauer M. An Indoor Air Filter Intervention Study of the Short-Term Cardiovascular Effects of Woodsmoke Exposure. CHER UBC. 2009.
- 17. Barn P, Larson T, Noullett M, Kennedy S, Copes R, Brauer M. Infiltration of forest fire and residential wood smoke: an evaluation of air cleaner effectiveness. J Expo Sci Environ Epidemiol. 2008 Sep;18(5):503-11
- 18. Henderson DE, Milford JB, Miller SL. Prescribed burns and wildfires in Colorado: impacts of mitigation measures on indoor air particulate matter. J Air Waste Manag Assoc. 2005 Oct;55(10):1516-26.
- 19. McDonald E, Cook D, Newman T, Griffith L, Cox G, Guyatt G. Effect of air filtration systems on asthma: a systematic review of randomized trials. Chest. 2002 Nov;122(5):1535-42.
- 20. Sublett JL, Seltzer J, Burkhead R, Williams PB, Wedner HJ, Phipatanakul W, et al. Air filters and air cleaners: Rostrum by the American Academy of Allergy, Asthma & Immunology Indoor Allergen Committee. J Allergy Clin Immunol. 2009 Nov 10.
- 21. Bell ML, Ebisu K, Peng RD, Dominici F. 2009. Adverse health effects of particulate air pollution: modification by air conditioning. Epidemiology. 20(5):682-686.
- 22. Vedal S. 2009. Does air conditioning modify the health effects of exposure to outdoor air pollution? Epidemiology.20(5):687-688.