

Cost Effective Treatment of Small Ground Water Systems

Associated

Engineering

15

Garry Drachenberg, P.Eng.

Cost Effective Treatment of Small Ground Water Systems

"The most cost effective treatment is the one that accomplishes treatment objectives at the least cost *it doesn't mean it's the least expensive*"

Cost Effective Treatment of Small Ground Water Systems

"How we treat it depends on"

"What's in it"

"Treatment Targets"

Presentation Overview

- What's in water
- What's in groundwater that needs treatment
- Typical ground water treatments
 - CT Concept
- Summary Comments

What's In Water

- Small & Big "Stuff"
- Basic Categories
 - Health Rated Parameters
 - Aesthetic / Nuisance Related

What's In Water

	Suspended			Colloidal		Dissolved		/ed		
Floc										
Algae										
Turbidity (course)										
Turbidity (fine)										
Bacteria			_							
Colloidal clay										
Colour										
Viruses						-				
Molecules and Atoms										
	Visible				Invisible					
Millimetres	10	1	Q1	aot	0001	0000	00001	000001	0000001	0,0000001

What's In Water

- Current "Prime Time"
 Contenders
- Less Pondered
 "Critters"
- Rising Stars

Prime Time Contenders

- Viruses (e.g., Norwalk virus, rotaviruses)
- Bacteria (e.g., *Shigella, E.coli*)
- Parasites, protozoa and cysts (e.g., *Giardia lamblia, Cryptosporidium*)

Types of Contaminants Causing Chronic Health Effects

- •Volatile organic chemicals (VOCs)
- Inorganic chemicals (IOCs)
- •Synthetic organic chemicals (SOCs)
- Radionuclides

Rising Stars

- **EDCs**: compounds that block, mimic, stimulate or inhibit the endocrine system
- The endocrine system: combination of glands and hormones that assist in reproduction, growth are development

Helicobacter pylori

- First discovered in 1982 in Australia
- Lives in the stomach!!
- 30-40% carry the organism in U.S.
 - Infection related to age and socioeconomic status

H. Pylori in Water?

- Reservoirs and transmission outside humans unclear
- Water transmission appears to be a major source
- Has been found even in wells with no total coliform bacteria!!!

Presentation Overview

- What's in water
- What's in groundwater that needs treatment

- Groundwater quality is influenced by four factors:
 - air quality,
 - the surface of the ground,
 - subsurface soils,
 - characteristics of the aquifer

• *Air Quality*: Can influence pH of rainwater

 Surface: carbonic and tannic are released which depress the pH

 Subsurface: Iron, manganese, sodium, calcium & more are dissolved into passing water making its way to the aquifer

 Within Aquifer: The geology and residence time within the aquifer are primary effectors of quality within the aquifer

Ground Water Source GWUDI Water Table Aquifer **Unconfined Aquifer** Confining Layer **Confined Aquifer**

Presentation Overview

- What's in water
- What's in groundwater that needs treatment
- Typical ground water treatments

Ground Water Treatment

Identify Key Constituents of Concern ("What type of stuff we want out of the water")

Focus

Health Based Parameters Aesthetic Based Parameters Treatment Aggravators

Ground Water or Surface Water Treatment

- "Conditioning" Stuff
- "Trapping" Stuff
- "Zapping" Stuff
- "Manipulating Time Travel" of Stuff

Ground Water Treatment

Aeration

Chemical Addition

pH Adjustment

Filtration

Particle Removal Spectrum

Filtration (Membrane)

Filtration (Membrane)

Water Softening

Softening Systems

Simplest Disinfection Techniques

Disinfection

Common Chlorine Disinfectants

Hazard Level

UV Disinfection

UV Disinfection

UV Disinfection System

Presentation Overview

- What's in water
- What's in groundwater that needs treatment
- Typical ground water treatments
 - CT Concept

Disinfection Considerations

- Type of Disinfectant
- Dose (C in mg/L)
- Contact Time (T in minutes)
- Microorganism Type and Concentration
- Water Quality (e.g., turbidity and organics)

Disinfection Baffle **Finished Water** Unfinished Water **Clear Well** Cl₂ Addition

<u>Amount / Unit of Measure</u> <u>Time</u>

Water disinfectants	mg/L	Х	minutes	
CT =	Concentration	Х	Time	
10 =	1	Х	10	
10 =	10	Х	1	
10 =	5	Х	2	

Note: The amount of disinfectant needed is highly pH and temperature dependent

Affects of pH and Temperature on Chlorine Disinfection (CT needed to inactivate Giardia)

рН	CT @ 20°C	CT @ 5°C
≤ 6	39	105
7	56	124
8	81	216
9	117	312

Comparison of Chlorine and Chloramine Disinfection at 20°C (CT needed to inactivate Giardia)

рН	Chlorine	Chloramine		
	СТ	СТ		
6	39	1100		
7	56	1100		
8	81	1100		
9	117	1100		

UV Dose Calculation

UV Fluence Calculation

UV Fluence

UV Dose µWs/cm² = UV Intensity μ W/cm² X

Contact Time (Seconds)

% x Transmittance

40,000 μWs/cm² 40 mWs/cm² 40 mj/cm²

Dose Examples

Dose required to kill 90% of a given population of a known organism.

- i.e. A one log reduction
- e.g E coli $5.4 \text{ mJ cm}^{-2} = 90\% \text{ kill}$ $10.8 \text{ mJ cm}^{-2} = 99\%$

etc...

Dose Examples

5.4
3.4
2.0
5.5
11.0
12.0
13.0
8.0
60.0

•Total Suspended Solids

•Transmittance

Factors Affecting UV

Total Suspended Solids

•As suspended solids increase in the water bacteria becomes occluded, or shadowed, from exposure to the UV light.

•Filtration is needed to decrease the amount of suspended solids, thus increasing the chance of disinfecting the water efficiently

Factors Affecting UV

Transmittance

• The ability of light, at a wavelength 254 nm, to transmit through the water.

• Transmittance is not equivalent to NTU values.

•Iron salts and organic matter have the most effect on transmittance

Factors Affecting UV

Lamp Technology - Fouling

"Cornerstone of Effective Disinfection"

Particle Free Water is "Ideal" (Shielding is of concern)

"Cornerstone of Effective Disinfection"

Particle Free Water is "Ideal" (Shielding is of concern)

Bacteria ingested by a nematode are protected from disinfection.

Clusters of bacteria are also protected from disinfection.

Treatment of Microbes

•Two methods...

•In other words...

Filtration

 Filtration
 Or
 Or
 Disinfection
 "Zap-em"

er Pretreatment is Cri

Cost Effective Treatment of Small Ground Water Systems

"The most cost effective treatment is the one that accomplishes treatment objectives at the least cost *it doesn't mean it's the least expensive*"

Treat Technologies Summary for Small Systems

Cost Comparison

Technolo gy	Some Contaminants Remo ved	Initial Cost	Oper ating Cost	Operating & Maintenance S kilk
Chlorine	Microbial	\$	\$	\$
UV, Ozone	Microbial	\$\$	\$	\$\$
Cartridge Filter	Protozoa Bacteria	\$	\$ to \$\$	\$
Reverse Osmosis	Microbial ,Inorganic Chemicals and Metals Radium, Minerals, Some Organic Chemicals	\$\$	\$\$\$	\$\$\$
Distillation	Microbial,Inorganic Chemicals and Metals, Minerals, Some organic Chemicals, Radium, Uranium	\$\$	\$\$	\$
Activated Carbon	Organic Chemicals, Radon, Odors (solid block can filter protozoa and some bacteria)	\$\$	\$\$ to \$\$\$	\$
Packed Tower Aeration	Radon, Volatile Organic Chemicals, Tastes, Odors	\$\$	\$	\$\$\$
lon Exchange	Inorganic Chemicals, Radium, Nitrate	\$\$	\$\$ to \$\$\$	\$\$
Activated Alumina	Arsenic, Selenium, Fluoride	\$\$\$	\$\$\$	\$\$\$
Table 1: Summary of PO	DE/POU Systems and Costs (NSF, 1999)	\$ Low	\$\$ Moderat	te \$\$\$ High

Presentation Overview

- What's in water
- What's in groundwater that needs treatment
- Typical ground water treatments
 - CT Concept
- Summary Comments

Rant #1: An all too common path that is taken

Standards Not Met

Meet the standards

Iron & Manganese Example

A simple lab analysis, on paper, doesn't tell you the personality of the iron: ... Is it organically complexed ... How readily is it oxidized ... Does only a portion of it get oxidized over time ... if so how much?

Iron & Manganese Example

What about the resulting precipitate Does it form quick Is it big Does it settle well Is it robust or fragile Is it filterable?

What's the most cost effective treatment to use?

Need To Determine:

- What type of "Stuff is in the water (Fingerprint Water Quality)
 - Type of "Stuff" we want out of the water

(Identify Key Constituents of Concern)

How to get the "Stuff out of the water or sedate its problematic tendancy

(Fingerprint Treatment Response)

Important to do your homework

- What type of "Stuff is in the water
- Type of "Stuff" we want out of the water
- How to get the "Stuff out of the water

Prescription / Recipe for Success!

Humility & courage is sometimes needed to get the job done.

Sometimes this means bravely going where others fear to tread.....

Disinfection Summary

Disinfectant	Bacteria	Viruses	Giardia	Crypto	By- products	Taste & Odour	Residual	Capital Cost	O & M Costs
Chlorine	5	5	3	1	2	3	4	5	4
Chlorine Dioxide	5	5	4	3	3	2	5	3	3
Choramine	4	3	2	1	4	4	5	4	4
Ultraviolet	5	4	5	5	5	4	1	3	3
Ozone	5	5	5	4	3	5	1	1	1

Process Integration

- Processes must be brought together for each treatment situation
 - which filtration type ?
 - what pre-treatment ?
 - which disinfectant(s) and where ?
 - other treatment needs
 - e.g.: colour, taste & odour, pH, iron, hardness

Questions

