National Collaborating Centre for Environmental Health

Intervention Strategies to Reduce Residential Pesticide Exposures AIHce 2009 Toronto, ON June 2, 2009 PO 119

M. Shum, C. Bos

National Collaborating Centre for Environmental Health

Centre de collaboration nationale en santé environnementale

BC Centre for Disease Control An Agency of the Provincial Health Services Authority

Objectives

- To identify:
 - The current state of knowledge about residential pesticide exposures
 - Intervention strategies to reduce pesticide exposure

Outline

- Residential pesticide use
- Take-home exposures
- Intervention strategies
 - Reduction of residential pesticide use
 - Reduction of take-home exposures
 - Integrated Pest Management (IPM)

Pesticides

- Pesticides:
 - Toxic to organisms: plants, insects, rodents, mold
 - Different toxicological characteristics
 - Heterogeneous group of chemicals
- Commonly used residential pesticides:
 - Herbicides: 2,4-D, glyphosphate, diacamba, Mecoprop
 - Combination: fertilizer-pesticide: 'Weed and Feed'
 - Insecticides: carbaryl, diazanon, malathion
- Sources: recreational areas and fields, yards, golf courses, schools and day care facilities

- 74% of US households used pesticides in 2002 (US EPA)
- 2,4-D most used active ingredient
- Seven of the top ten in the home and garden sector are herbicides and three are insecticides
- Insecticides comprised nearly 60% of all expenditures in the home and garden sector

Ref: Pesticide Industry Sales and usage 2000-2001 Market estimates US EPA

Outdoors

- Assessing organophosphorus (OP) pesticide exposure among children living in two Seattle metropolitan area communities
- Measured urinary metabolites; 110 children, 96 households
- Identified possible exposure risk factors through a parental interview
- Urine samples were analyzed for six diakylphosphate (DAP) compounds, the common metabolites of the OP pesticides

Ref: Lu et al., 2001

- At least one of the DAP metabolites was measured in 99% of the children
- Higher DAP concentrations for children who
 - Lived with a garden (diethyl DAP)
 - Lived in households where garden pesticide use was reported (both dimethyl and diethyl DAP)
 - Had pets in the households (dimethyl DAP) but no association for use of pesticides on pets.

Ref: Lu et al., 2001

Garden pesticide use was associated with elevated metabolite levels; most significant

Residential use of pesticides and the distribution of dimethyl dialkylphosphate concentrations (μ mol/L) in children living in the Seattle metropolitan area. *Significantly higher dimethyl DAP concentrations were found in children whose parents reported use of pesticides in their gardens, Mann-Whitney *U*-Wilcoxon rank-sum *W* test, *p* = 0.05.

Ref: Lu C, Knutson DE et al., Environmental Health Perspectives 2001

Pesticides indoors

Pesticide application indoors Tracking of pesticides from outdoors

Indoor environment

- On average, people in moderate climates are assumed to spend up to 95% of their time indoors
- 87% in enclosed buildings, 6% of their time in enclosed vehicles
- Home environment source of exposure to pesticides

- Over-use is common in poorly-maintained multiunit dwellings
- OP pesticides most heavily applied throughout New York State in 1997
 - Heaviest use of OP pesticides in Manhattan and Brooklyn
- Often banned or restricted-use pesticides used (*tres pasitos* a carbamate, tiza china, and methyl parthion)

References: Adgate et al., 2000, Surgan et al., 2002, Dingle 1999 Landrigan et al., 1999)

Other exposure pathways

- Important pathway for residential contamination of homes of agricultural workers
 - Spray drift, volatilization, soil/foliar resuspension, track-in on shoes, and transport on clothing
- Only a couple of studies of track-in in urban or non-agricultural settings
 - 2,4**-**D
 - Organophosphate application of orchards pesticides detected in non-applicator homes 50 feet from orchard

Factors that affect exposure

- The application: e.g. amount used, application method, personal protective equipment
- Ambient conditions: temperature, humidity, wind
- Post-application interventions: removing shoes, storing clothes outside
- Population exposed: applicator (professional, residential), resident, neighbours, children etc.

Nishioka et al., 1996, 1999, 2001

- Lawn application of 2,4-D
- Dislodgeable 2,4-D turf residue and correlation to carpet dust
- Collected indoor air, surface wipes and floor dust samples
 - 2 year study
 - 13 homes
 - 1 week before application
 - 1 week after

Main findings

- Track-in dominant contributor to floor loadings
- Spray drift and foliar resuspension accounted for only 1% of 2,4-D on floors
- Bare floors 5-20x lower loading than carpet
- Highest loading at entry ways
- Entry mats decreased carpet dust residue by average of 33%

Main findings

- Higher air levels associated with active children (esp w/ shoes) and pets
- Assumption 2,4-D on floors is resuspended to tables and sills through high activity
- Estimated non-dietary ingestion (1-2 yr olds) from contact with floors post-application
 - Median 1 μg/day (max 6.7 μg/day) vs. 1.3 μg/day from diet
 - 10 x higher than pre-application exposures

Main findings

- Amount sprayed externally was not related to amount of residue inside homes
 - Track-in and high activity more important than any application factor

Intervention strategies

Reduction of residential pesticide exposure Reduction of take-home exposures Integrated Pest Management (IPM)

Reduction of residential pesticide exposure

- Bans or restrictions on use on public, municipal and/or private property
- Alternatives to pesticides
- Production of locally grown organic produce

Reduction of take-home exposure

- Remove shoes
- Replace carpet with bare floors
- Use entry mat
- Reduce track in by active pets, homeowner applicator
- Increase vacuuming (entry)

Integrated Pest Management (IPM)

- Method of pest control based on modifying the physical environment and reducing the use of chemicals
- Common components
 - Repair, sealing of entry points
 - Least toxic pest control application
 - Professional cleaning
 - Education

Intervention Studies

Study	Intervention	Location	Ν	Methodology	Duration	Findings
Campbell et al., 1999	IPM (cockroach)	Apt complex	80	Educational session, booklet. Questionnaire before and after	8 mo	Improvement of: Knowledge Attitudes Practices
Brenner et al., 2003	IPM (cockroach)	Urban households	131	Monitoring biweekly (2mo), then monthly (4 mo)	6 mo	Decline from 80.5 to 39% in households with cockroaches
Gergen, 1999	House-cleaning and professional extermination (cockroach)	Inner-city dwelling	48	Measured Bla g1 in settled dust in 48 homes, 0, 2, 6, 12 mo	1 year	No difference.
Williams et al., 2006	IPM (reduce prenatal exposure)	Inner city homes New York City	25	2-week integrated indoor air samples before and after, 21 maternal blood and umbilical cord	1 mo	IPM is effective

Conclusions

- Limited # of intervention studies
- Track-in and household activity levels more important than application factors for take-home exposures
- IPM is effective for reducing pesticide exposure in residences

Questions?

- contact@ncceh.ca
- mona.shum@bccdc.ca