

Health Impacts of Air Pollution in Canada: Recent findings on mortality, morbidity, and monetized costs by transportation, industry, and residential sectors

NCCEH Webinar September 28, 2023

Angelos T. Anastasopolos, PhD Mathieu Rouleau, MSc

Air Sectors Assessment and Exposure Science Division Health Canada

<u>CONTACT</u>: angelos.anastasopolos@canada.ca mathieu.rouleau@hc-sc.gc.ca

YOUR HEALTH AND SAFETY ... OUR PRIORITY.

Report published in February 2023

→ link in chat !!

PROJECT TEAM

Health Canada

- Air Sectors Assessment and Exposure Science Division
- Economic Health and Analysis Division

Environment & Climate Change Canada

 Air Quality Policy-Issue Response Section, Meteorological Service of Canada

HEALTH IMPACTS OF AIR POLLUTION FROM TRANSPORTATION, INDUSTRY AND RESIDENTIAL SOURCES IN CANADA

Estimates of premature mortality and morbidity outcomes at national, provincial, territorial, and air zone levels

Outline

- I. Project overview
 - objectives
 - methods
- II. Sector health impact results
 - > national & prov/terr "top 3" sectors
- III. Case studies (example results)
 - > sectors of interest: residential wood combustion, on-road vehicles
 - example air zone: Southern Ontario
- IV. Key findings & next steps

Project objectives

- quantify outdoor air quality and health impacts by sector
 - 21 sectors: industrial, residential and transportation
- compare health impacts
 - across sectors
 - by region: national, prov/terr, airzone
- inform policy, management strategies

> so how did we do this? let's talk a bit about methodology...

METHODS SECTORS ASSESSED

TRANSPORTATION SOURCES (8)

- on-road
 - light duty vehicles
 - heavy duty vehicles
- off-road
- air
- marine

• rail

RESIDENTIAL SOURCES (2)

- residential fuel combustion
- residential wood combustion (RWC) aka "home firewood burning"

INDUSTRY SOURCES (11)

- ore and mineral
 - cement
 - non-ferrous refining/smelting
- oil and gas upstream
- oil and gas downstream
- electric power generation
 - coal-fired
- manufacturing
 - chemicals
 - pulp and paper

EXCLUDED

- wildfires
- agriculture
- open sources (e.g., construction dust)
- Transboundary pollution

METHODS | MODELLING FRAMEWORK

Step 1 Air pollutant emissions

$\label{eq:pm2.5} \begin{array}{c} \mathsf{PM}_{2.5}, \ \mathsf{PM}_{10,} \ \mathsf{NO}_{x}, \ \mathsf{CO}, \ \mathsf{SO}_{x}, \ \mathsf{VOC}, \\ \mathsf{NH}_{3} \end{array}$

Inventory development

Source	1990	2000	2005	2
ORE AND MINERAL INDUSTRIES	54 000	51 000	41 000	
Aluminium Industry	5 400	4 600	5 200	
Asphalt Paving Industry	1 900	1 700	1 500	
Cement and Concrete Industry	11 000	9 700	12 000	
Foundries	4 600	4 300	4 500	
Iron and Steel Industry	11 000	9 700	5 200	
Iron Ore Pelletizing	650	3 900	1 200	
Mineral Products Industry	1 300	1 200	960	
Mining and Rock Quarrying	9 600	10 000	6 900	
Non-Ferrous Refining and Smelting Industry	8 600	5 600	4 100	
OIL AND GAS INDUSTRY	12 000	14 000	12 000	
Downstream Oil and Gas Industry	5 100	4 900	4 600	
Upstream Oil and Gas Industry	6 800	8 800	7 900	
ELECTRIC POWER GENERATION (UTILITIES)	49 000	23 000	9 100	
Coal	46 000	20 000	5 000	
Landfill Gas	0.41	1.6	5.3	
Natural Gas	1 300	2 100	1 900	
Diesel	280	410	400	
Other (Electric Power Generation)	1 300	720	1 800	
MANUFACTURING	110 000	75 000	45 000	
Abrasives Manufacturing	390	210	200	
Bakeries	0.54	0.54	0.43	
Biofuel Production			-	
Chemicals Industry	4 800	4 500	4 100	
Electronics	130	39	5.7	
Food Preparation	1 400	2 100	1 700	
Glass Manufacturing	950	1 300	1 100	
Grain Industry	2 200	2 900	2 000	
Metal Fabrication	180	270	360	
Plastics Manufacturing	150	170	120	
Pulp and Paper Industry	61 000	25 000	18 000	
Textiles	16	23	18	
Vehicle Manufacturing (Engines, Parts, Assembly, Painting)	1 700	1 600	650	
Wood Products	35 000	28 000	14 000	
Other (Manufacturing)	6 300	8 900	3 000	
TRANSPORTATION AND MOBILE EQUIPMENT	70 000	72 000	65 000	

Spatial Allocation

Step 2 Air quality modelling

PM_{2.5}, NO₂, O₃, SO₂

Chemical transport modelling

Exposure estimates

Step 3 Health impact modelling

Morbidity and mortality endpoints

Number of outcomes

Monetized impacts

SECTOR APPORTIONMENT – ZERO-OUT MODELLING

Sector contribution to ambient concentrations

– Sector population exposure estimate

METHODS | MODELLING STEP 3 – health impacts by sector

Air Quality Benefits Assessment Tool (AQBAT)

$HI_i = Exposure_i \times Risk \times Pop \times State of health$

HI_i: sector *i* health impacts; Exposure_i: air pollutant concentration attributable to sector *i*; Risk: concentration-response function for a pollutant-endpoint pair; Pop: target population for an enpoint; State of health: baseline incidence rate for an endpoint

Monetized impacts for sector $i = HI_i \times Willingness$ to Pay

Pollutant–Endpoint Pairs		
NO ₂	Acute exposure mortality	
O ₃	Acute exposure mortality	
Summer O ₃	Chronic exposure respiratory mortality Acute respiratory symptom days; Asthma symptom days; Minor restricted activity days; Respiratory emergency room visits; Respiratory hospital admissions	
PM2.5Chronic exposure mortality Acute respiratory symptom days; Adult chronic bronchitis cases; Asthma symptom days; Card emergency room visits; Cardiac hospital admissions; Child acute bronchitis episodes; Respiratory emergency room visits; Respiratory hospital admissions; Restricted activity days		

II. Sector results | comparisons of health impacts

- national
- provincial

Sector HIA | HEALTH IMPACTS – NATIONAL

- nationally, <u>6,500 deaths</u> (2015) attribute to ambient air pollution from all modelled sectors
- total health burden (premature mortality + morbidity) equivalent to <u>\$51 B annually</u> in monetized costs
- sectors with greatest health impacts
 - residential wood combustion (home firewood burning)
 - on-road transportation
 - ore and mineral industry

Air pollution-related mortality $(PM_{2.5}, NO_2, O_3, summer-O_3 | national 2015 total).$

HEALTH IMPACTS – PROVINCIAL

- <u>some sectors rank high in nearly all provinces</u> → RWC, on-road transportation
- other high-health impact sectors are highly regional (i.e., industry)
 - \circ oil and gas \rightarrow West (AB, SK)
 - ore and mineral → Central (ON, QB) + MB + NB
 - \circ electric power gen \rightarrow West (AB, SK) + Atlantic (NS, NL, PE)
 - \circ marine transportation \rightarrow Atlantic (NS, NL)
- provincial <u>costs for top-3 are substantial</u>

RWC
All-on road transp.
Ore & mineral
Oil & gas
Elec. Power Gen.
Off-road transp.
Marine transp.

III. Sector results | CASE STUDIES

- sectors of interest ("sector dashboard")
- example air zone

SECTOR DASHBOARD | Residential: home firewood burning (RWC)

EMISSIONS

- <u>dominant sector for multiple</u> <u>pollutants</u> (PM_{2.5}, PM₁₀, VOC; within top 3 for CO, NH₃)
- PM_{2.5} emissions ranking high in all prov/terr (except NU)
 - nationally, <u>~2.5x total of all</u> transportation sectors
- inherently greater EI uncertainty

AIR QUALITY IMPACTS

- nationally, <u>within top 3</u>
 contributing to ambient PM_{2.5}
- within top 3 in most provinces (West, Central, Atlantic)
- substantial AQ impacts
 - e.g., contribution to annual avg pop-wt levels of PM_{2.5}
 → QC, 2.4 ug/m³
 → BC, 0.9 ug/m³

HEALTH IMPACTS

- nationally in 2015, <u>2,300 deaths</u>
 - <u>top-ranked</u> in majority of provinces: Central, Atlantic, BC (not in West)
 - within these provinces, <u>top-ranked in majority of air zones</u>
 - including <u>lower pop air zones</u>

substantial morbidity

- 9,300 child acute bronchitis cases
- 2,100 adult chronic bronchitis cases
- 1,300 hospital admissions and emergency room visits (cardiac & respiratory)
- 5.9 M symptom days (acute respiratory and asthma)
- 2.9 M restricted activity days
- \$18 B monetized health costs (2015 CAD, mortality + morbidity)
- <u>2x higher than All On-Road</u> <u>Transportation</u>

Sector HIA | AIR QUALITY IMPACTS - RWC

% RWC contribution to ambient PM_{2.5} (annual average daily mean, 2015)

 in many locations (grid cells), RWC contributes
 <u>40-70%</u>
 <u>of PM_{2.5} levels</u> (annual average daily mean)
 QC

BC

0

PM25 (%) 70 60 50 45 40 30 25 20 15 10 Environnement et Changement climatique Can Environment and Climate Change Canada 0

SECTOR DASHBOARD | Transportation: On-Road Vehicles

EMISSIONS

- <u>highest in most populated/urban</u> provinces
- <u>ubiquitous source</u>: top 3 in most provinces for NO_x, CO, VOC, NH₃
- LDV, HDV differ meaningfully
 - LDV → CO, SO_x, VOC, NH₃
 - \circ HDV \rightarrow PM_{2.5}, PM₁₀, NOx

AIR QUALITY IMPACTS

- nationally, <u>within top 3</u> sectors contributing to ambient PM_{2.5}, NO₂, summer O₃
- within top 3 in most provinces, espec. West, Central regions
 - e.g., contribution to annual avg pop-wt levels in BC \rightarrow 10% of PM_{2.5} (0.4 ug/m³) \rightarrow 47% of NO₂ (2 ppb)

HEALTH IMPACTS

- nationally in 2015, <u>1,200 deaths</u>
 - within top 3 in <u>nearly all provinces</u> and <u>majority of air zones</u>

substantial morbidity

- 3,600 child acute bronchitis cases
- 800 adult chronic bronchitis cases
- 780 hospital admissions and emergency room visits (cardiac & respiratory)
- 3 M symptom days (acute respiratory and asthma)
- 1.3 M restricted activity days

\$9.5 B monetized health costs

(2015 CAD, mortality + morbidity)

HDV dominates impacts

• HDV ~ 2x LDV (mortality, \$)

air zone | Southern Ontario, ON

- Central Canada
- high population air zone ~ 12.4 M
- <u>health impacts</u> from modelled sectors
 - 2,200 deaths (ON total = 2,400)
 - \$19 B (mortality + morbidity)
- pollutants driving health impacts are largely PM_{2.5} (1800 deaths), then NO₂
- top sectors contributing health impacts
 - **1.** Home firewood burning/RWC (510 deaths \rightarrow driven by sector-contributed PM_{2.5})
 - **2.** On-road transportation (470 \rightarrow O₃, PM_{2.5})
 - **3.** Ore and mineral industry $(400 \rightarrow PM_{2.5})$
 - 4. Off-road & mobile equipment $(370 \rightarrow PM_{2.5})$
- multiple sectors with similar impacts

more info on air zones at: https://ccme.ca/en/air-quality-report

- individual sector <u>health impacts</u> not always aligned with emissions inventory inference
 - → require quantification via air quality and health burden modelling
 - for key sectors, geographic scale is important

 \checkmark

 \checkmark

- \rightarrow national \neq provincial/territorial \neq air zone
- sector-based health impact results can help air quality management <u>better target most important/relevant</u> <u>sources</u>
 - → Air Quality Management System (AQMS) air zones
- sectors from all classes important to reduce air pollution health risk
 - → transportation sources, industry sources, residential sources

Health Canada report published at

publications.gc.ca

HEALTH IMPACTS OF AIR POLLUTION FROM TRANSPORTATION, INDUSTRY AND RESIDENTIAL SOURCES IN CANADA

Estimates of premature mortality and morbidity outcome at national, provincial, territorial, and air zone levels

Parts Canada Canada

NEXT STEPS

Air quality & health burden modelling

modelling Agriculture sector, including key subsectors (animal, crop)

 \checkmark

>

- 2019 emissions data
- first time HC leading health burden
- modelling on this sector
- ✓ partnership with AAFC, ECCC

updated modelling of RWC sector

- 2019 emissions data
- ✓ for comparison with 2015 RWC results
- emissions inventory comparison suggests similar magnitude of results (i.e., remains top-ranked sector)

- currently developing new <u>interactive website</u> of sector health burden data
 - ... stay tuned! 🙂

Thank you!

Angelos T. Anastasopolos, PhD Mathieu Rouleau, MSc

Air Sectors Health Assessment Section (ASHAS) Air Pollution Exposure Science Section (APExSS)

E | angelos.anastasopolos@canada.ca mathieu.rouleau@hc-sc.gc.ca

Air Health Science Division Healthy Environments and Consumer Safety Branch Health Canada | Government of Canada

HEALTH CANADA >