

Project Purpose

- -Assess and characterize the risk of lead contamination
- -Assess the effectiveness of flushing as a control measure

Presentation Overview

Background

Project Methodology

Project Findings

Recommended Future Projects

Background: Sources of Exposure

Pre-1970 - vehicle exhaust contained lead from leaded gasoline

-U.S. E.P.A. began phase-out in 1970's

-Canada Gasoline Regulations enacted 1990

Average daily lead exposure: 20% from drinking water sources

Background: Drinking Water Concerns

Flint, Michigan:

- -Acidic drinking water with no corrosion inhibitor
- -Lead distribution pipes corroded
- -100,000 residents exposed to lead

Metro Vancouver (2016):

- -pH 6.5 (untreated)
- -pH 7.2 (treated)
- -Soda ash used for corrosion control

Background: Effects on Children

Chronic effects:

- -Nausea, abdominal pain, constipation
- -Loss of coordination, numbness
- -Decreased IQ, antisocial behaviour

W.H.O.: Children absorb 4x - 5x more lead than adults

Background: Involved Agencies

BCCDC:

Dr. Reza Afshari, Senior Scientist

BC Centre for Disease Control

An agency of the Provincial Health Services Authority

Fraser Health Authority:

Annette Dellinger, Child Care Licensing Manager

traserhealth

Better health. Best in health care

Methods: Sample & Data Collection

Candidate list provided by Fraser Health Authority

Initial Contact:

-Telephone, e-mail, site visit

Total 31% participation rate of 52 contacted

-Accepted: 16

-Declined: 13

-No Reply: 23

Methods: Sample & Data Collection

Interview Data:

-Facility Age, Facility Type (In-Home vs. Institutional), Fixture Types

Water Samples:

- 3x 250 mL flush portions at zero minutes, 1 minute, 5 minutes
- 1x 250 mL re-stagnation portion at 2 hours

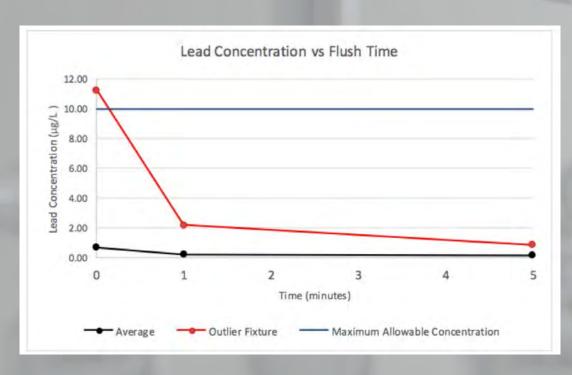
Methods: Analysis via AAS

Project Findings

Table 1: Facility type & age

Facility Number	Facility Type	Facility Age (years) c. 20		
000	In-Home			
001	In-Home	c. 30		
002	In-Home	c. 30		
003	Institution	c. 50		
004	Institution	c. 60		
005	Institution	c. 40		
006	Institution	92		
007	Institution	Unknown		
008	Institution	Unknown		
009	Institution	Unknown		
010	In-Home	c. 15		
011	Institution	c. 10		
012	Institution	c. 5		
013	Institution	c. 10		
014	Institution	21		
015	Institution	Unknown		

Project Findings


Table 2: Fixtures & Lead Concentrations

Facility Fixture Number Number	Fixture	Flating Tons	Lead Concentration (µg/L)			
	Fixture Type	T=0	T=1	T=5	T=120	
000	1	Kitchen Sink	<0.10U	<0.10U	<0.10U	<0.100
000	2	Washroom Sink	<0.10U	<0.10U	<0.10U	<0.100
001	3	Kitchen Sink	<0.10U	<0.10U	<0.10U	<0.100
002	4	Kitchen Sink	<0.10U	<0.10U	<0.10U	<0.100
003	5	Countertop Sink	<0.10U	<0.10U	<0.10U	<0.100
004	6	Countertop Sink	1.17	0.5	0.37	0.64
004	7	Countertop Sink	11.27	2.19	0.87	n/a ²
004	8	Water Fountain	0.32	0.11	0.13	0.19
005	9	Kitchen Sink	0.81	<0.10U	<0.10U	0.51
006	10	Kitchen Sink	0.2	<0.10U	<0.10U	<0.100
007	11	Kitchen Sink	0.21	<0.10U	<0.10U	0.34
008	12	Kitchen Sink	<0.10U	<0.10U	<0.10U	<0.100
009	13	Kitchen Sink	0.11	<0.10U	<0.10U	0.64
009	14	Countertop Sink	<0.10U	<0.10U	<0.10U	<0.100
010	15	Countertop Sink	<0.10U	<0.10U	0.21	<0.100
011	16	Countertop Sink	0.15	0.11	0.12	<0.100
012	17	Countertop Sink	0.16	0.13	<0.10U	<0.100
013	18	Countertop Sink	<0.10U	<0.10U	<0.10U	<0.100
014	19	Countertop Sink	<0.10U	<0.10U	<0.10U	<0.100
014	20	Countertop Sink	<0.10U	<0.10U	<0.10U	<0.100
014	21	Countertop Sink	<0.10U	<0.10U	<0.10U	<0.100
015	22	Countertop Sink	<0.10U	<0.10U	<0.10U	<0.100
015	23	Countertop Sink	<0.10U	<0.10U	<0.10U	<0.101

¹Values below the detection limit are expressed as "<0.10U".

²Sample collection was not performed due to lack of sampling capacity.

Project Findings

Project Findings: Limitations

Participation:

-Low Participation Rate & Participation Bias

Scheduling:

-Time restrictions - limited to business hours

Operator Knowledge Gaps

Project Findings: Public Health Significance

- -Lead contamination is present in certain facilities
 -Under normal circumstances, below Health Canada's 10 μg/L
- -Flushing for 1 minute results in significant decrease in lead

Recommended Future Projects

Comparison of municipalities

Sampling & analysis of Vancouver, White Rock, etc.

In-depth assessment of institution sub-types & age

In-school daycares vs. commercial buildings

